Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9798, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684784

ABSTRACT

Aging-related sarcopenia is a degenerative loss of strength and skeletal muscle mass that impairs quality of life. Evaluating NUDT3 gene and myogenin expression as new diagnostic tools in sarcopenia. Also, comparing the concomitant treatment of resistance exercise (EX) and creatine monohydrate (CrM) versus single therapy by EX, coenzyme Q10 (CoQ10), and CrM using aged rats. Sixty male rats were equally divided into groups. The control group, aging group, EX-treated group, the CoQ10 group were administered (500 mg/kg) of CoQ10, the CrM group supplied (0.3 mg/kg of CrM), and a group of CrM concomitant with resistance exercise. Serum lipid profiles, certain antioxidant markers, electromyography (EMG), nudix hydrolase 3 (NUDT3) expression, creatine kinase (CK), and sarcopenic index markers were measured after 12 weeks. The gastrocnemius muscle was stained with hematoxylin-eosin (H&E) and myogenin. The EX-CrM combination showed significant improvement in serum lipid profile, antioxidant markers, EMG, NUDT3 gene, myogenin expression, CK, and sarcopenic index markers from other groups. The NUDT3 gene and myogenin expression have proven efficient as diagnostic tools for sarcopenia. Concomitant treatment of CrM and EX is preferable to individual therapy because it reduces inflammation, improves the lipid serum profile, promotes muscle regeneration, and thus has the potential to improve sarcopenia.


Subject(s)
Aging , Creatine , Muscle, Skeletal , Resistance Training , Sarcopenia , Ubiquinone/analogs & derivatives , Sarcopenia/drug therapy , Sarcopenia/metabolism , Animals , Male , Rats , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Physical Conditioning, Animal , Myogenin/metabolism , Myogenin/genetics , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Antioxidants/metabolism , Creatine Kinase/blood , Rats, Wistar
2.
Sensors (Basel) ; 23(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37631831

ABSTRACT

This study presents an enhanced deep learning approach for the accurate detection of eczema and psoriasis skin conditions. Eczema and psoriasis are significant public health concerns that profoundly impact individuals' quality of life. Early detection and diagnosis play a crucial role in improving treatment outcomes and reducing healthcare costs. Leveraging the potential of deep learning techniques, our proposed model, named "Derma Care," addresses challenges faced by previous methods, including limited datasets and the need for the simultaneous detection of multiple skin diseases. We extensively evaluated "Derma Care" using a large and diverse dataset of skin images. Our approach achieves remarkable results with an accuracy of 96.20%, precision of 96%, recall of 95.70%, and F1-score of 95.80%. These outcomes outperform existing state-of-the-art methods, underscoring the effectiveness of our novel deep learning approach. Furthermore, our model demonstrates the capability to detect multiple skin diseases simultaneously, enhancing the efficiency and accuracy of dermatological diagnosis. To facilitate practical usage, we present a user-friendly mobile phone application based on our model. The findings of this study hold significant implications for dermatological diagnosis and the early detection of skin diseases, contributing to improved healthcare outcomes for individuals affected by eczema and psoriasis.


Subject(s)
Deep Learning , Eczema , Psoriasis , Humans , Quality of Life , Skin , Psoriasis/diagnosis , Eczema/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...