Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Pak J Pharm Sci ; 37(1(Special)): 185-189, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747268

ABSTRACT

Burn is a debilitating and devastating emergency with many physical and psychological sequelae. Essential steps in burn wound management include cleansing/wound debridement, application of topical antimicrobial and dressing of affected body areas. Objective of this study is comparison in effectiveness of Hydro-fiber Silver dressing and 1% silver sulfadiazine dressing in management of pediatric burn patients in terms of wound healing. After ethical approval, 264 patients were enrolled and divided into two groups. Patients were managed with hydro-fiber silver dressing in group A and 1% silver sulfadiazine dressing in group B. An experienced pediatric surgeon examined the wounds for re epithelialization and efficacy was labeled after 15 days. Out of 264 enrolled patients 148(56.06%) were males and 116(43.94%) were females. Mean age of patients was 3.73±2.34 years. Type of burn was Scald in 215(81.4%) patients and flame in 49(18.6%). Depth of burn was 2nd degree in 185(70.08%) patients and 3rd degree in 79(29.92%) patients. Mean TBSA was 19.93±9.62%. In group A the efficacy was achieved in 91(68.9%) patients whereas in group B the efficacy was achieved in 73(55.3%) patients (p-value<0.05). Hydro-fiber Silver dressing is significantly more efficacious as compared to 1% silver sulfadiazine dressing for treatment of pediatric burn.


Subject(s)
Bandages , Burns , Silver Sulfadiazine , Humans , Silver Sulfadiazine/therapeutic use , Silver Sulfadiazine/administration & dosage , Burns/therapy , Burns/drug therapy , Female , Male , Child, Preschool , Child , Wound Healing/drug effects , Treatment Outcome , Infant , Anti-Infective Agents, Local/therapeutic use , Anti-Infective Agents, Local/administration & dosage , Silver/therapeutic use
2.
Plant Sci ; 328: 111576, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36565935

ABSTRACT

Fiber growing inside the cotton bolls is a highly demandable product and its quality is key to the success of the textile industry. Despite the various efforts to improve cotton fiber staple length Pakistan has to import millions of bales to sustain its industrial needs. To improve cotton fiber quality Bacterial cellulose synthase (Bcs) genes (acsA, acsB) were expressed in a local cotton variety CEMB-00. In silico studies revealed a number of conserved domains both in the cotton-derived and bacterial cellulose synthases which are essential for the cellulose synthesis. Transformation efficiency of 1.27% was achieved by using Agrobacterium shoot apex cut method of transformation. The quantitative mRNA expression analysis of the Bcs genes in transgenic cotton fiber was found to be many folds higher during secondary cell wall synthesis stage (35 DPA) than the expression during elongation phase (10 DPA). Average fiber length of the transgenic cotton plant lines S-00-07, S-00-11, S-00-16 and S-00-23 was calculated to be 13.02% higher than that of the non-transgenic control plants. Likewise, the average fiber strength was found to be 20.92% higher with an enhanced cellulose content of 22.45%. The mutated indigenous cellulose synthase genes of cotton generated through application of CRISPR/Cas9 resulted in 6.03% and 12.10% decrease in fiber length and strength respectively. Furthermore, mature cotton fibers of transgenic cotton plants were found to have increased number of twists with smooth surface as compared to non-transgenic control when analyzed under scanning electron microscope. XRD analysis of cotton fibers revealed less cellulose crystallinity index in transgenic cotton fibers as compared to control fibers due to deposition of more amorphous cellulose in transgenic fibers as a result of Bcs gene expression. This study paved the way towards unraveling the fact that Bcs genes influence cellulose synthase activity and this enzyme helps in determining the fate of cotton fiber length and strength.


Subject(s)
Cellulose , Cotton Fiber , Glucosyltransferases/genetics , Gossypium/genetics , Gene Expression Regulation, Plant
3.
Sci Rep ; 12(1): 21093, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473939

ABSTRACT

Premature leaf senescence negatively influences the physiology and yield of cotton plants. The conserved IDLNL sequence in the C-terminal region of AGL42 MADS-box determines its repressor potential for the down regulation of senescence-related genes. To determine the delay in premature leaf senescence, Arabidopsis AGL42 gene was overexpressed in cotton plants. The absolute quantification of transgenic cotton plants revealed higher mRNA expression of AGL42 compared to that of the non-transgenic control. The spatial expression of GUS fused with AGL42 and the mRNA level was highest in the petals, abscission zone (flower and bud), 8 days post anthesis (DPA) fiber, fresh mature leaves, and senescenced leaves. The mRNA levels of different NAC senescence-promoting genes were significantly downregulated in AGL42 transgenic cotton lines than those in the non-transgenic control. The photosynthetic rate and chlorophyll content were higher in AGL42 transgenic cotton lines than those in the non-transgenic control. Fluorescence in situ hybridization of the AG3 transgenic cotton line revealed a fluorescent signal on chromosome 1 in the hemizygous form. Moreover, the average number of bolls in the transgenic cotton lines was significantly higher than that in the non-transgenic control because of the higher retention of floral buds and squares, which has the potential to improve cotton fiber yield.


Subject(s)
Gossypium , Transcription Factors , Gossypium/genetics , Down-Regulation , Transcription Factors/genetics , In Situ Hybridization, Fluorescence , Plant Senescence , RNA, Messenger
4.
Planta ; 256(6): 107, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36342558

ABSTRACT

MAIN CONCLUSION: VInv gene editing in potato using CRISPR/Cas9 resulted in knockdown of expression and a lower VInv enzymatic activity resulting in a decrease in post-harvest cold-storage sugars formation and sweetening in potatoes. CRISPR-Cas9-mediated knockdown of vacuolar invertase (VInv) gene was carried out using two sgRNAs in local cultivar of potato plants. The transformation efficiency of potatoes was found to be 11.7%. The primary transformants were screened through PCR, Sanger sequencing, digital PCR, and ELISA. The overall editing efficacy was determined to be 25.6% as per TIDE analysis. The amplicon sequencing data showed maximum indel frequency for potato plant T12 (14.3%) resulting in 6.2% gene knockout and 6% frame shift. While for plant B4, the maximum indel frequency of 2.0% was found which resulted in 4.4% knockout and 4% frameshift as analyzed by Geneious. The qRT-PCR data revealed that mRNA expression of VInv gene was reduced 90-99-fold in edited potato plants when compared to the non-edited control potato plant. Following cold storage, chips analysis of potatoes proved B4 and T12 as best lines. Reducing sugars' analysis by titration method determined fivefold reduction in percentage of reducing sugars in tubers of B4 transgenic lines as compared to the control. Physiologically genome-edited potatoes behaved like their conventional counterpart. This is first successful report of knockdown of potato VInv gene in Pakistan that addressed cold-induced sweetening resulting in minimum accumulation of reducing sugars in genome edited tubers.


Subject(s)
Solanum tuberosum , beta-Fructofuranosidase , beta-Fructofuranosidase/genetics , beta-Fructofuranosidase/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , CRISPR-Cas Systems , Gene Expression Regulation, Plant , Gene Expression , Sugars/metabolism
5.
Mol Biol Rep ; 49(6): 5419-5426, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35064408

ABSTRACT

BACKGROUND: Gossypium arboreum is a cotton crop native to tropical and subtropical regions that are naturally resistant to cotton leaf curl virus (CLCuV). However, its cultivation is unfavorable due to the lower quality and shorter fiber length of cotton when compared to the market leading G. hirsutum. Plasma membrane intrinsic protein 2 (PIP2) is an aquaporin responsible for the transport of water and small molecules across cellular membranes. This fluid transport influences cell elongation and cotton fibre development. Hence, increased PIP2 expression may yield plants with enhanced fiber qualities including length. METHODS AND RESULTS: To test this hypothesis, G. arboreum was transformed with a PIP2 gene construct (35SCpPIP2) using the Agrobacterium-mediated shoot apex cutting method. Relative expression of the CpPIP2 gene in transgenic plants increased up to 35-fold when compared with non-transgenic controls. Transgenic plants displayed a corresponding increase of staple length (up to 150%) when compared with non-transgenic controls. Transgene integration was examined using FISH and karyotyping and revealed the presence of a single transgene located on chromosome 6. CONCLUSION: Since G. arboreum is naturally whitefly and CLCuV resistant, this improvement of fiber length evidenced for CpPIP2 transgenic plants renders their crop production more economically viable.


Subject(s)
Begomovirus , Gossypium , Begomovirus/genetics , Cell Membrane , Cotton Fiber , Gene Expression Regulation, Plant , Gossypium/genetics , Plant Diseases/genetics , Plants, Genetically Modified/genetics
6.
Infect Drug Resist ; 15: 7699-7705, 2022.
Article in English | MEDLINE | ID: mdl-36600953

ABSTRACT

Introduction: Antibiotics are being used in humans and animals for treatment and control of bacterial infections. Excessive use of antibiotics in the production of poultry is a popular practice, but it poses serious health issues by transferring resistance from farm to humans via food or direct exposure. Study Objective: The objective of this study was to carry out a comparison of the resistance and sensitivity profile of isolated isolates from sewage of toilets that were in use of workers inside the farm and from sewage of household toilets. Methodology: In this study, a total of 320 sewage samples were collected. The antibiotic susceptibility profile was checked by Kirby-Bauer disc diffusion method, and the statistical analysis was carried out by MS excel. Chi-square test was performed to determine whether the antibiograms from two sample types were statistically different from each other or not. Results: From 320 sewage samples, a total of 296 bacterial isolates were isolated among which the leading bacterium was E. coli. The proportion of resistance, ESBL production and MDR was significantly higher in bacteria isolated from sewage of toilets under use of poultry farm workers as compared to the sewage from domestic use toilets. Conclusion: Resistance significantly increased in the bacteria isolated from toilets under use of poultry farm workers as compared to the ones isolated from control sewage samples.

7.
Mol Biol Rep ; 49(6): 5315-5323, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34839448

ABSTRACT

BACKGROUND: The efficacy of Bt crystal proteins has been compromised due to their extensive utilization in the field. The second-generation Bt vegetative insecticidal proteins could be the best-suited alternative to combat resistance build-up due to their broad range affinity with midgut receptors of insects. MATERIAL AND RESULTS: The codon-optimized synthetic vegetative insecticidal proteins (Vip3Aa) gene under the control of CaMV35S promoter was transformed into a locally developed transgenic cotton variety (CKC-01) expressing cry1Ac and cry2A genes. Transformation efficiency of 1.63% was recorded. The highest Vip3Aa expression (51.98-fold) was found in MS3 transgenic cotton plant. Maximum Vip3Aa protein concentration (4.23 µg/mL) was calculated in transgenic cotton plant MS3 through ELISA. The transgenic cotton plant (MS3) showed one copy number on both chromatids in the homozygous form at chromosome 8 at the telophase stage. Almost 99% mortality of H. armigera was recorded in transgenic cotton plants expressing double crystal proteins pyramided with Vip3Aa gene as contrasted to transgenic cotton plant expressing only double crystal protein with 70% mortality. CONCLUSIONS: The results obtained during this study suggest that the combination of Bt cry1Ac, cry2A, and Vip3Aa toxins is the best possible alternative approach to combat chewing insects.


Subject(s)
Bacillus thuringiensis Toxins , Moths , Animals , Bacterial Proteins/genetics , Endotoxins/genetics , Gossypium/genetics , Hemolysin Proteins/genetics , Insecta/genetics , Insecticide Resistance/genetics , Larva , Moths/genetics , Plants, Genetically Modified/genetics
8.
Arch Physiol Biochem ; : 1-14, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34403619

ABSTRACT

The current research was aimed to evaluate the antidiabetic activity of Terminalia citrina methanolic extract (TCME) by streptozotocin-induced diabetes in male Wistar rats. TCME exhibited better in-vitro antioxidant and alpha-amylase inhibitory activity as compared to other tested extracts. TCME at 250, 500, and 750 mg/kg showed notable (p < .05) antidiabetic potential by lowering fasting blood glucose level, restoring lipid level, serum amylase, HbA1c, kidney, and liver function tests as coevidenced from histological findings of the liver, pancreas, and kidney. TCME remarkably reinstated the antioxidant enzymatic activities (CAT: 0.181 ± 0.011 IU/mg protein, SOD: 21.45 ± 1.53 IU/mg protein) and reduced lipid peroxidation level (40.60 ± 2.41 µM/mg protein) in the liver and kidney tissue of diabetic rats at 750 mg/kg dose. The acute and subacute oral toxicity study of TCME exhibited no clinical toxicity signs and mortality. Its GC-MS spectrum unveiled the existence of 10-octadecenoic acid and other compounds which might have contributed to antidiabetic potential.

9.
Sci Rep ; 11(1): 12428, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34127751

ABSTRACT

Sugarcane (Saccharum officinarum L.) is a cash crop grown commercially for its higher amounts of sucrose, stored within the mature internodes of the stem. Numerous studies have been done for the resistance development against biotic and abiotic stresses to save the sucrose yields. Quality and yield of sugarcane production is always threatened by the damages of cane borers and weeds. In current study two problems were better addressed through the genetic modification of sugarcane for provision of resistance against insects and weedicide via the expression of two modified cane borer resistant CEMB-Cry1Ac (1.8 kb), CEMB-Cry2A (1.9 kb) and one glyphosate tolerant CEMB-GTGene (1.4 kb) genes, driven by maize Ubiquitin Promoter and nos terminator. Insect Bio-toxicity assays were carried out for the assessment of Cry proteins through mortality percent of shoot borer Chilo infuscatellus at 2nd instar larvae stage. During V0, V1 and V2 generations young leaves from the transgenic sugarcane plants were collected at plant age of 20, 40, 60, 80 days and fed to the Chilo infuscatellus larvae. Up to 100% mortality of Chilo infuscatellus from 80 days old transgenic plants of V2 generation indicated that these transgenic plants were highly resistant against shoot borer and the gene expression level is sufficient to provide complete resistance against target pests. Glyphosate spray assay was carried out for complete removal of weeds. In V1-generation, 70-76% transgenic sugarcane plants were found tolerant against glyphosate spray (3000 mL/ha) under field conditions. While in V2-generation, the replicates of five selected lines 4L/2, 5L/5, 6L/5, L8/4, and L9/6 were found 100% tolerant against 3000 mL/ha glyphosate spray. It is evident from current study that CEMB-GTGene, CEMB-Cry1Ac and CEMB-Cry2A genes expression in sugarcane variety CPF-246 showed an efficient resistance against cane borers (Chilo infuscatellus) and was also highly tolerant against glyphosate spray. The selected transgenic sugarcane lines showed sustainable resistance against cane borer and glyphosate spray can be further exploited at farmer's field level after fulfilling the biosafety requirements to boost the sugarcane production in the country.


Subject(s)
Crops, Agricultural/genetics , Disease Resistance/genetics , Pest Control/methods , Plants, Genetically Modified/genetics , Saccharum/genetics , Animals , Crops, Agricultural/drug effects , Crops, Agricultural/parasitology , Glycine/analogs & derivatives , Glycine/pharmacology , Herbicide Resistance/genetics , Larva , Moths , Plant Proteins/genetics , Plant Weeds , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/parasitology , Saccharum/drug effects , Saccharum/parasitology , Glyphosate
10.
GM Crops Food ; 12(1): 292-302, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33648412

ABSTRACT

Gossypium arboreum (Desi Cotton) holds a special place in cotton industry because of its inherent ability to withstand drought, salinity, and remarkable resistance to sucking pests and cotton leaf curl virus. However, it suffers yield losses due to weeds and bollworm infestation. Genetic modification of G. arboreum variety FBD-1 was attempted in the current study to combat insect and weedicide resistance by incorporating cry1Ac, cry2A and cp4-EPSPS genes under control of 35S promoter in two different cassettes using kanamycin and GUS as markers through Agrobacterium-mediated shoot apex cut method of cotton transformation. The efficiency of transformation was found to be 1.57%. Amplification of 1700 bp for cry1Ac, 167 bp for cry2A and 111 bp for cp4-EPSPS confirmed the presence of transgenes in cotton plants. The maximum mRNA expression of cry1Ac and cp4-EPSPS was observed in transgenic cotton line L3 while minimum in transgenic cotton line L1. The maximum protein concentrations of Cry1Ac, Cry2A and Cp4-EPSPS of 3.534 µg g-1, 2.534 µg g-1 and 3.58 µg-g-1 respectively were observed for transgenic cotton line L3 as compared to control cotton line. On leaf-feed-based insect bioassay, almost 99% mortality was observed for Helicoverpa armigera on the transgenic cotton plant (L3). It completely survived the 1900 ml hectare-1 glyphosate spray assay as compared to non-transgenic cotton plants. The necrotic spots appeared on the third day, leading to the complete death of control plants on the fifth day of assay. The successful multiple gene-stacking in G. arboreum FBD-1 variety could be further used for qualitative improvement of cotton fiber through plant breeding techniques.


Subject(s)
Gossypium , Moths , Animals , Bacterial Proteins/genetics , Endotoxins , Gossypium/genetics , Hemolysin Proteins/genetics , Plant Breeding , Plants, Genetically Modified
11.
Plant Cell Rep ; 40(4): 707-721, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33634360

ABSTRACT

KEY MESSAGE: Second generation Bt insecticidal toxin in comibination with Allium sativum leaf agglutinin gene has been successfully expressed in cotton to develop sustainable resistance against major chewing and sucking insects. The first evidence of using the Second-generation Bt gene in combination with Allium sativum plant lectin to develop sustainable resistance against chewing and sucking insects has been successfully addressed in the current study. Excessive use of Bt δ-endotoxins in the field is delimiting its insecticidal potential. Second-generation Bt Vip3Aa could be the possible alternative because it does not share midgut receptor sites with any known cry proteins. Insecticidal potential of plant lectins against whitefly remains to be evaluated. In this study, codon-optimized synthetic Bt Vip3Aa gene under CaMV35S promoter and Allium sativum leaf agglutinin gene under phloem-specific promoter were transformed in a local cotton variety. Initial screening of putative transgenic cotton plants was done through amplification, histochemical staining and immunostrip assay. The mRNA expression of Vip3Aa gene was increased to be ninefold in transgenic cotton line L6P3 than non-transgenic control while ASAL expression was found to be fivefold higher in transgenic line L34P2 as compared to non-transgenic control. The maximum Vip3Aa concentration was observed in transgenic line L6P3. Two copy numbers in homozygous form at chromosome number 9 and one copy number in hemizygous form at chromosome number 10 was observed in transgenic line L6P3 through fluorescent in situ hybridization. Significant variation was observed in transgenic cotton lines for morphological characteristics, whereas physiological parameters of plants and fiber characteristics (as assessed by scanning electron microscopic) remained comparable in transgenic and non-transgenic cotton lines. Leaf-detach bioassay showed that all the transgenic lines were significantly resistant to Helicoverpa armigera showing mortality rates between 78% and 100%. Similarly, up to 95% mortality of whiteflies was observed in transgenic cotton lines when compared with non-transgenic control lines.


Subject(s)
Bacterial Proteins/genetics , Gossypium/genetics , Insecta , Plant Lectins/genetics , Plants, Genetically Modified/physiology , Agglutinins/genetics , Animals , Cotton Fiber , Crops, Agricultural/genetics , Crops, Agricultural/physiology , Garlic/genetics , Gene Dosage , Gossypium/physiology , Hemiptera , Insect Control , Moths , Promoter Regions, Genetic
12.
Front Plant Sci ; 11: 476251, 2020.
Article in English | MEDLINE | ID: mdl-33281834

ABSTRACT

The study aims to improve fiber traits of local cotton cultivar through genetic transformation of sucrose synthase (SuS) gene in cotton. Sucrose synthase (SuS) is an important factor that is involved in the conversion of sucrose to fructose and UDP-glucose, which are essential for the synthesis of cell wall cellulose. In the current study, we expressed a synthetic SuS gene in cotton plants under the control of a CaMV35S promoter. Amplification of an 813-bp fragment using gene-specific primers confirmed the successful introduction of SuS gene into the genome of cotton variety CEMB-00. High SuS mRNA expression was observed in two transgenic cotton plants, MA0023 and MA0034, when compared to the expression in two other transgenic cotton plants, MA0035 and MA0038. Experiments showed that SuS mRNA expression was positively correlated with SuS activity at the vegetative (54%) and reproductive stages (40%). Furthermore, location of transgene was found to be at chromosome no. 9 in the form of single insertion, while no signal was evident in non-transgenic control cotton plant when evaluated through fluorescent in situ hybridization and karyotyping analysis. Fiber analyses of the transgenic cotton plants showed increases of 11.7% fiber length, 18.65% fiber strength, and up to 5% cellulose contents. An improvement in the micronaire value of 4.21 was also observed in the MA0038 transgenic cotton line. Scanning electron microscopy (SEM) revealed that the fibers of the SuS transgenic cotton plants were highly spiral with a greater number of twists per unit length than the fibers of the non-transgenic control plants. These results determined that SuS gene expression influenced cotton fiber structure and quality, suggesting that SuS gene has great potential for cotton fiber quality improvement.

13.
Front Vet Sci ; 7: 499, 2020.
Article in English | MEDLINE | ID: mdl-33062645

ABSTRACT

Newcastle disease (ND) is a viral disease that causes labored breathing, periorbital oedema, and ataxia in the majority of avian species. The available vaccines against Newcastle disease virus (NDV) are limited, owing to their low reactivity and multiple dosage requirements. Plant-based machinery provides an attractive and safe system for vaccine production. In the current study, we attempted to express fusion (F) and hemagglutinin-neuraminidase (HN) proteins (the protective antigens against NDV) under constitutive 35S and seed-specific Zein promoters, respectively. Almost 2-7.1-fold higher expression of F gene mRNA in transgenic corn leaves and 8-28-fold higher expression of HN gene mRNA in transgenic corn seeds were observed, when the expression was analyzed by real-time PCR on a relative basis as compared to non-transgenic control plant material (Leaves and seeds). Similarly, 1.66 µg/ml of F protein in corn leaves, i.e., 0.5% of total soluble protein, and 2.4 µg/ml of HN protein in corn seed, i.e., 0.8% of total seed protein, were found when calculated through ELISA. Similar levels of immunological response were generated in chicks immunized through injection of E. coli-produced pET F and pET HN protein as in chickens orally fed leaves and seeds of maize with expressed immunogenic protein. Moreover, the detection of anti-NDV antibodies in the sera of chickens that were fed maize with immunogenic protein, and the absence of these antibodies in chickens fed a normal diet, confirmed the specificity of the antibodies generated through feeding, and demonstrated the potential of utilizing plants for producing more vaccine doses, vaccine generation at higher levels and against other infectious diseases.

14.
Sci Rep ; 10(1): 8958, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32488033

ABSTRACT

Whitefly infestation of cotton crop imparts enormous damage to cotton yield by severely affecting plant health, vigour and transmitting Cotton Leaf Curl Virus (CLCuV). Genetic modification of cotton helps to overcome both the direct whitefly infestation as well as CLCuV based cotton yield losses. We have constitutively overexpressed asparaginase (ZmASN) gene in Gossypium hirsutum to overcome the cotton yield losses imparted by whitefly infestation. We achieved 2.54% transformation efficiency in CIM-482 by Agrobacterium-mediated shoot apex transformation method. The relative qRT-PCR revealed 40-fold higher transcripts of asparaginase in transgenic cotton line vs. non-transgenic cotton lines. Metabolic analysis showed higher contents of aspartic acid and glutamic acid in seeds and phloem sap of the transgenic cotton lines. Phenotypically, the transgenic cotton lines showed vigorous growth and height, greater number of bolls, and yield. Among six representative transgenic cotton lines, line 14 had higher photosynthetic rate, stomatal conductance, smooth fiber surface, increased fiber convolutions (SEM analysis) and 95% whitefly mortality as compared to non-transgenic cotton line. The gene integration analysis by fluorescence in situ hybridization showed single copy gene integration at chromosome number 1. Collectively, asparaginase gene demonstrated potential to control whitefly infestation, post-infestation damages and improve cotton plant health and yield: a pre-requisite for farmer's community.


Subject(s)
Asparaginase/genetics , Gossypium/genetics , Plants, Genetically Modified/genetics , Animals , Asparaginase/metabolism , Begomovirus/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant/genetics , Hemiptera/genetics , Hemiptera/pathogenicity , Insecticides/metabolism , Plant Diseases/genetics
15.
Mol Biotechnol ; 61(9): 663-673, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31228008

ABSTRACT

The prevalence of insect resistance against Bt toxins has led to the idea of enhancing demethylation from cell wall pectin by pectin methylesterase enzyme for overproduction of methanol which is toxic to insects pests. The AtPME and AnPME fragments ligated into pCAMBIA1301 vector were confirmed through restriction digestion with EcoR1 and BamH1. Excision of 3363 bp fragment from 11,850 bp vector confirmed the ligation of both fragments into pCAMBIA1301 vector. Transformation of pectin methylesterase-producing genes, i.e., AtPME and AnPME from Arabidopsis thaliana and Aspergillus niger cloned in plant expression vector pCAMBIA1301 under 35S promoter into cotton variety CEMB-33 harboring two Bt genes Cry1Ac and Cry2A, respectively, was done by using shoot apex-cut Agrobacterium-mediated transformation method. The plantlets were screened on MS medium supplemented with hygromycin on initial basis. Amplification of 412 and 543 bp, respectively, through gene-specific primer has been obtained which confirmed the successful introduction of pCAMBIA AtPME and AnPME genes into cotton variety CEMB 33. Relative expression of AtPME and AnPME genes through real-time PCR determined the expression level of both gene ranges between 3- and 3.5-fold in different transgenic cotton lines along with quantity of methanol ranging from 0.8 to 0.9% of maximum while 0.5% to 0.6% of minimum but no expression was obtained in negative non-transgenic control cotton plant with least quantity of methanol, i.e., 0.1%. Almost 100% mortality was observed in insect bioassay for Helicoverpa armigera on detached leaves bioassay and 63% for Pink Bollworm (Pectinophora gossypiella) on growing transgenic cotton bolls as compared to positive control transgenic cotton with double Bt genes where mortality was found to be 82% for H. armigera and 50% for P. gossypiella while 0% in negative control non-transgenic plants.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Fungal Proteins/genetics , Gossypium/genetics , Larva/drug effects , Methanol/toxicity , Moths/drug effects , Plant Proteins/genetics , Agrobacterium/genetics , Agrobacterium/metabolism , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Aspergillus niger/genetics , Aspergillus niger/metabolism , Carboxylic Ester Hydrolases/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Cell Wall/parasitology , Cloning, Molecular , Fungal Proteins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Gossypium/parasitology , Herbivory/drug effects , Herbivory/physiology , Insecticides/chemistry , Insecticides/toxicity , Larva/pathogenicity , Methanol/metabolism , Moths/pathogenicity , Plant Cells/metabolism , Plant Cells/parasitology , Plant Leaves/genetics , Plant Leaves/parasitology , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transgenes
16.
Front Plant Sci ; 6: 943, 2015.
Article in English | MEDLINE | ID: mdl-26617613

ABSTRACT

More than 50 countries around the globe cultivate cotton on a large scale. It is a major cash crop of Pakistan and is considered "white gold" because it is highly important to the economy of Pakistan. In addition to its importance, cotton cultivation faces several problems, such as insect pests, weeds, and viruses. In the past, insects have been controlled by insecticides, but this method caused a severe loss to the economy. However, conventional breeding methods have provided considerable breakthroughs in the improvement of cotton, but it also has several limitations. In comparison with conventional methods, biotechnology has the potential to create genetically modified plants that are environmentally safe and economically viable. In this study, a local cotton variety VH 289 was transformed with two Bt genes (Cry1Ac and Cry2A) and a herbicide resistant gene (cp4 EPSPS) using the Agrobacterium mediated transformation method. The constitutive CaMV 35S promoter was attached to the genes taken from Bacillus thuringiensis (Bt) and to an herbicide resistant gene during cloning, and this promoter was used for the expression of the genes in cotton plants. This construct was used to develop the Glyphosate Tolerance Gene (GTGene) for herbicide tolerance and insecticidal gene (Cry1Ac and Cry2A) for insect tolerance in the cotton variety VH 289. The transgenic cotton variety performed 85% better compared with the non-transgenic variety. The study results suggest that farmers should use the transgenic cotton variety for general cultivation to improve the production of cotton.

17.
BMC Res Notes ; 8: 453, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26383095

ABSTRACT

BACKGROUND: Cotton yield has been badly affected by different insects and weed competition. In Past Application of multiple chemicals is required to manage insects and weed control was achieved by different conventional means, such as hand weeding, crop rotation and polyculture, because no synthetic chemicals were available. The control methods shifted towards high input and target-oriented methods after the discovery of synthetic herbicide in the 1930s. To utilise the transgenic approach, cotton plants expressing the codon-optimised CEMB GTGene were produced in the present study. RESULTS: Local cotton variety CEMB-02 containing Cry1Ac and Cry2A in single cassette was transformed by synthetic codon-optimised 5-enolpyruvylshikimate-3-phosphate synthase gene cloned into pCAMBIA 1301 vector under 35S promoter with Agrobacterium tumifaciens. Putative transgenic plants were screened in MS medium containing 120 µmol/L glyphosate. Integration and expression of the gene were evaluated by PCR from genomic DNA and ELISA from protein. A 1.4-kb PCR product for Glyphosate and 167-bp product for Cry2A were obtained by amplification through gene specific primers. Expression level of Glyphosate and Bt proteins in two transgenic lines were recorded to be 0.362, 0.325 µg/g leaf and 0.390, 0.300 µg/g leaf respectively. FISH analysis of transgenic lines demonstrates the presence of one and two copy no. of Cp4 EPSPS transgene respectively. Efficacy of the transgene Cp4 EPSPS was further evaluated by Glyphosate spray (41 %) assay at 1900 ml/acre and insect bioassay which shows 100 %mortality of insect feeding on transgenic lines as compared to control. CONCLUSION: The present study shows that the transgenic lines produced in this study were resistant not only to insects but also equally good against 1900 ml/acre field spray concentration of glyphosate.


Subject(s)
Gossypium , Herbicide Resistance , DNA Copy Number Variations , Glycine/analogs & derivatives , Gossypium/genetics , Plants, Genetically Modified , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...