Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 29(1)2017 Jan.
Article in English | MEDLINE | ID: mdl-27787938

ABSTRACT

Chromium nanoparticles are formed using superfluid helium droplets as the nanoreactors, which are strongly ferromagnetic. The transition from antiferromagentism to ferromagnetism is attributed to atomic-scale disorder in chromium nanoparticles, leading to abundant unbalanced surface spins. Theoretical modeling confirms a frustrated aggregation process in superfluid helium due to the antiferromagnetic nature of chromium.

2.
Phys Chem Chem Phys ; 17(26): 16699-704, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26059415

ABSTRACT

Binary clusters containing a large organic molecule and metal atoms have been formed by the co-addition of 5,10,15,20-tetra(4-pyridyl)porphyrin (H2TPyP) molecules and gold atoms to superfluid helium nanodroplets, and the resulting complexes were then investigated by electron impact mass spectrometry. In addition to the parent ion H2TPyP yields fragments mainly from pyrrole, pyridine and methylpyridine ions because of the stability of their ring structures. When Au is co-added to the droplets the mass spectra are dominated by H2TPyP fragment ions with one or more Au atoms attached. We also show that by switching the order in which Au and H2TPyP are added to the helium droplets, different types of H2TPyP-Au complexes are clearly evident from the mass spectra. This study suggests a new route for the control over the growth of metal-organic compounds inside superfluid helium nanodroplets.


Subject(s)
Gold/chemistry , Helium/chemistry , Metalloporphyrins/chemical synthesis , Metalloporphyrins/chemistry , Molecular Structure
3.
Nano Lett ; 14(5): 2902-6, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24742117

ABSTRACT

Direct preparation of long one-dimensional (1D) nanostructures with diameters <10 nm inside superfluid helium droplets is reported. Unlike conventional chemical synthetic techniques, where stabilizers, templates, or external fields are often required to induce 1D growth, here, we exploit the use of quantized vortices to guide the formation of ultrathin nanowires. A variety of elements have been added to the droplets to demonstrate that this is a general phenomenon, including Ni, Cr, Au, and Si. Control of the length and diameter of the nanowires is also demonstrated.

4.
Phys Chem Chem Phys ; 16(15): 6903-6, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24615588

ABSTRACT

The formation of Ag nanoparticles by the addition of Ag atoms to helium droplets has been investigated. The resulting nanoparticles were then imaged by transmission electron microscopy after being deposited on a thin solid surface. In large helium droplets chains of Ag nanorods were observed similar to recently reported track-like deposits [Gomez et al., Phys. Rev. Lett., 2012, 108, 155302]. However, by adjusting the experimental conditions chains of spherical nanoparticles could also be seen with a nearly uniform inter-particle spacing. Given that spherical Ag nanoparticles have no intrinsic anisotropy, the only viable explanation is that these particles must be guided into position by interaction with a quantized vortex spanning the diameter of the helium droplet. Furthermore, addition of Si to the droplets immediately after Ag resulted in Si inserting between the Ag nanoparticles to form continuous nanowires. This eliminates the possibility that the segmented Ag nanostructures are the result of nanowire fragmentation when the helium droplets collide with the deposition substrate. Thus segmented Ag chains are shown to be an intrinsic feature of Ag aggregation in helium droplets in the presence of a quantized vortex.

5.
Nanoscale ; 5(23): 11545-53, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-24107922

ABSTRACT

Helium droplets provide a cold and confined environment where atomic and/or molecular dopants can aggregate into clusters and nanoparticles. In particular, the sequential addition of different materials to helium droplets can lead to the formation of a wide range of nanoparticles, including core-shell nanoparticles, which can then be deposited onto a surface. Here we briefly discuss the fundamental properties of helium droplets and then address their implications for the formation of clusters and nanoparticles. Several key experiments on atomic and molecular clusters will be highlighted and new results obtained for nanoparticles formed in this way will be presented. Finally, the versatility, the limitations and new possibilities provided by superfluid helium droplets in nanoscience and nanotechnology will be addressed.

6.
Faraday Discuss ; 162: 113-24, 2013.
Article in English | MEDLINE | ID: mdl-24015579

ABSTRACT

Helium droplets are large helium clusters that are capable of picking up individual atoms and molecules and show promise as nano-reactors for the synthesis of unique nanoparticles. In particular, the sequential addition of materials of different types offers opportunities for the fabrication of novel core-shell nanoparticles that cannot be synthesised by other methods. To exploit this potential, here we have carried out a mass spectrometry investigation on metal clusters in order to establish how to control the doping conditions for the fabrication of nanoparticles in superfluid helium droplets, and in particular to develop a recipe to control core and shell ratios in the case of core-shell nanoparticles. Several types of metal nanoparticles, including pure Ag, Au and Ni nanoparticles, and Ag/Au and Ni/Au core-shell systems, have been synthesised and then removed from the helium droplets by deposition on substrates for ex situ investigations using high-resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The TEM imaging has been used to estimate the sizes of nanoparticles, which show a bimodel distribution under the conditions employed. We also present the first evidence that crystalline metal nanoparticles are formed by self-assembly of metal atoms in helium droplets. The XPS investigation of Ni/Au core-shell nanoparticles shows an absence of any Au 4f core-level shift that would occur on alloying of Au and Ni, which provides the first direct evidence for the successful formation of core-shell nanoparticles using superfluid helium droplets.

7.
J Chem Phys ; 127(6): 064701, 2007 Aug 14.
Article in English | MEDLINE | ID: mdl-17705615

ABSTRACT

HD molecules formed in v"=3 and v"=4 have been detected by laser spectroscopy when a cold (15 K) graphite surface is irradiated with H and D atoms. Population of the v"=3, J"=0-6 and v"=4, J"=0-6 levels has been detected and the average rotational temperatures of the nascent HD were determined. These results are compared with previous data collected for the formation of HD in v"=1 and 2 under similar conditions. This comparison indicates that the nascent HD flux increases with increasing vibrational quantum number for v"=1-4.

SELECTION OF CITATIONS
SEARCH DETAIL
...