Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
2.
JAMA Netw Open ; 7(7): e2419258, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949812

ABSTRACT

Importance: In the context of emerging SARS-CoV-2 variants or lineages and new vaccines, it is key to accurately monitor COVID-19 vaccine effectiveness (CVE) to inform vaccination campaigns. Objective: To estimate the effectiveness of COVID-19 vaccines administered in autumn and winter 2022 to 2023 against symptomatic SARS-CoV-2 infection (with all circulating viruses and XBB lineage in particular) among people aged 60 years or older in Europe, and to compare different CVE approaches across the exposed and reference groups used. Design, Setting, and Participants: This case-control study obtained data from VEBIS (Vaccine Effectiveness, Burden and Impact Studies), a multicenter study that collects COVID-19 and influenza data from 11 European sites: Croatia; France; Germany; Hungary; Ireland; Portugal; the Netherlands; Romania; Spain, national; Spain, Navarre region; and Sweden. Participants were primary care patients aged 60 years or older with acute respiratory infection symptoms who were recruited at the 11 sites after the start of the COVID-19 vaccination campaign from September 2022 to August 2023. Cases and controls were defined as patients with positive and negative, respectively, reverse transcription-polymerase chain reaction (RT-PCR) test results. Exposures: The exposure was COVID-19 vaccination. The exposure group consisted of patients who received a COVID-19 vaccine during the autumn and winter 2022 to 2023 vaccination campaign and 14 days or more before symptom onset. Reference group included patients who were not vaccinated during or in the 6 months before the 2022 to 2023 campaign (seasonal CVE), those who were never vaccinated (absolute CVE), and those who were vaccinated with at least the primary series 6 months or more before the campaign (relative CVE). For relative CVE of second boosters, patients receiving their second booster during the campaign were compared with those receiving 1 booster 6 months or more before the campaign. Main Outcomes and Measures: The outcome was RT-PCR-confirmed, medically attended, symptomatic SARS-CoV-2 infection. Four CVE estimates were generated: seasonal, absolute, relative, and relative of second boosters. CVE was estimated using logistic regression, adjusting for study site, symptom onset date, age, chronic condition, and sex. Results: A total of 9308 primary care patients were included, with 1687 cases (1035 females; median [IQR] age, 71 [65-79] years) and 7621 controls (4619 females [61%]; median [IQR] age, 71 [65-78] years). Within 14 to 89 days after vaccination, seasonal CVE was 29% (95% CI, 14%-42%), absolute CVE was 39% (95% CI, 6%-60%), relative CVE was 31% (95% CI, 15% to 44%), and relative CVE of second boosters was 34% (95% CI, 18%-47%) against all SARS-CoV-2 variants. In the same interval, seasonal CVE was 44% (95% CI, -10% to 75%), absolute CVE was 52% (95% CI, -23% to 82%), relative CVE was 47% (95% CI, -8% to 77%), and relative CVE of second boosters was 46% (95% CI, -13% to 77%) during a period of high XBB circulation. Estimates decreased with time since vaccination, with no protection from 180 days after vaccination. Conclusions and Relevance: In this case-control study among older Europeans, all CVE approaches suggested that COVID-19 vaccines administered in autumn and winter 2022 to 2023 offered at least 3 months of protection against symptomatic, medically attended, laboratory-confirmed SARS-CoV-2 infection. The effectiveness of new COVID-19 vaccines against emerging SARS-CoV-2 variants should be continually monitored using CVE seasonal approaches.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Seasons , Vaccine Efficacy , Humans , Aged , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , Female , Europe/epidemiology , Male , SARS-CoV-2/immunology , Middle Aged , Case-Control Studies , Aged, 80 and over , Vaccination/statistics & numerical data , European People
3.
Vaccine ; 42(19): 3931-3937, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38839521

ABSTRACT

In autumn 2023, European vaccination campaigns predominantly administered XBB.1.5 vaccine. In a European multicentre study, we estimated 2023 COVID-19 vaccine effectiveness (VE) against laboratory-confirmed symptomatic infection at primary care level between September 2023 and January 2024. Using a test-negative case-control design, we estimated VE in the target group for COVID-19 vaccination overall and by time since vaccination. We included 1057 cases and 4397 controls. Vaccine effectiveness was 40 % (95 % CI: 26-53 %) overall, 48 % (95 % CI: 31-61 %) among those vaccinated < 6 weeks of onset and 29 % (95 % CI: 3-49 %) at 6-14 weeks. Our results suggest that COVID-19 vaccines administered to target groups during the autumn 2023 campaigns showed clinically significant effectiveness against laboratory-confirmed, medically attended symptomatic SARS-CoV-2 infection in the 3 months following vaccination. A longer study period will allow for further variant-specific COVID-19 VE estimates, better understanding decline in VE and informing booster administration policies.


Subject(s)
COVID-19 Vaccines , COVID-19 , Primary Health Care , SARS-CoV-2 , Vaccine Efficacy , Humans , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Europe/epidemiology , Female , Male , Middle Aged , Adult , SARS-CoV-2/immunology , Case-Control Studies , Aged , Young Adult , Adolescent , Vaccination/methods , Vaccination/statistics & numerical data , Immunization Programs
4.
Euro Surveill ; 29(13)2024 Mar.
Article in English | MEDLINE | ID: mdl-38551095

ABSTRACT

BackgroundScarce European data in early 2021 suggested lower vaccine effectiveness (VE) against SARS-CoV-2 Omicron lineages than previous variants.AimWe aimed to estimate primary series (PS) and first booster VE against symptomatic BA.1/BA.2 infection and investigate potential biases.MethodsThis European test-negative multicentre study tested primary care patients with acute respiratory symptoms for SARS-CoV-2 in the BA.1/BA.2-dominant period. We estimated PS and booster VE among adults and adolescents (PS only) for all products combined and for Comirnaty alone, by time since vaccination, age and chronic condition. We investigated potential bias due to correlation between COVID-19 and influenza vaccination and explored effect modification and confounding by prior SARS-CoV-2 infection.ResultsAmong adults, PS VE was 37% (95% CI: 24-47%) overall and 60% (95% CI: 44-72%), 43% (95% CI: 26-55%) and 29% (95% CI: 13-43%) < 90, 90-179 and ≥ 180 days post vaccination, respectively. Booster VE was 42% (95% CI: 32-51%) overall and 56% (95% CI: 47-64%), 22% (95% CI: 2-38%) and 3% (95% CI: -78% to 48%), respectively. Primary series VE was similar among adolescents. Restricting analyses to Comirnaty had little impact. Vaccine effectiveness was higher among older adults. There was no signal of bias due to correlation between COVID-19 and influenza vaccination. Confounding by previous infection was low, but sample size precluded definite assessment of effect modification.ConclusionPrimary series and booster VE against symptomatic infection with BA.1/BA.2 ranged from 37% to 42%, with similar waning post vaccination. Comprehensive data on previous SARS-CoV-2 infection would help disentangle vaccine- and infection-induced immunity.


Subject(s)
COVID-19 , Influenza, Human , Humans , Adolescent , Aged , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , BNT162 Vaccine , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Vaccine Efficacy , Europe/epidemiology , Primary Health Care
5.
Euro Surveill ; 29(8)2024 Feb.
Article in English | MEDLINE | ID: mdl-38390651

ABSTRACT

Influenza A viruses circulated in Europe from September 2023 to January 2024, with influenza A(H1N1)pdm09 predominance. We provide interim 2023/24 influenza vaccine effectiveness (IVE) estimates from two European studies, covering 10 countries across primary care (EU-PC) and hospital (EU-H) settings. Interim IVE was higher against A(H1N1)pdm09 than A(H3N2): EU-PC influenza A(H1N1)pdm09 IVE was 53% (95% CI: 41 to 63) and 30% (95% CI: -3 to 54) against influenza A(H3N2). For EU-H, these were 44% (95% CI: 30 to 55) and 14% (95% CI: -32 to 43), respectively.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza B virus , Influenza A Virus, H3N2 Subtype , Vaccination , Case-Control Studies , Seasons , Hospitals , Primary Health Care
6.
Influenza Other Respir Viruses ; 18(1): e13243, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38204584

ABSTRACT

Background: Influenza A(H3N2) viruses dominated early in the 2022-2023 influenza season in Europe, followed by higher circulation of influenza A(H1N1)pdm09 and B viruses. The VEBIS primary care network estimated the influenza vaccine effectiveness (VE) using a multicentre test-negative study. Materials and Methods: Primary care practitioners collected information and specimens from patients consulting with acute respiratory infection. We measured VE against any influenza, influenza (sub)type and clade, by age group, by influenza vaccine target group and by time since vaccination, using logistic regression. Results: We included 38 058 patients, of which 3786 were influenza A(H3N2), 1548 influenza A(H1N1)pdm09 and 3275 influenza B cases. Against influenza A(H3N2), VE was 36% (95% CI: 25-45) among all ages and ranged between 30% and 52% by age group and target group. VE against influenza A(H3N2) clade 2b was 38% (95% CI: 25-49). Overall, VE against influenza A(H1N1)pdm09 was 46% (95% CI: 35-56) and ranged between 29% and 59% by age group and target group. VE against influenza A(H1N1)pdm09 clade 5a.2a was 56% (95% CI: 46-65) and 79% (95% CI: 64-88) against clade 5a.2a.1. VE against influenza B was 76% (95% CI: 70-81); overall, 84%, 72% and 71% were among 0-14-year-olds, 15-64-year-olds and those in the influenza vaccination target group, respectively. VE against influenza B with a position 197 mutation of the hemagglutinin (HA) gene was 79% (95% CI: 73-85) and 90% (95% CI: 85-94) without this mutation. Conclusion: The 2022-2023 end-of-season results from the VEBIS network at primary care level showed high VE among children and against influenza B, with lower VE against influenza A(H1N1)pdm09 and A(H3N2).


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza Vaccines , Influenza, Human , Child , Humans , Europe/epidemiology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Primary Health Care , Vaccine Efficacy , Infant, Newborn , Infant , Child, Preschool , Adolescent , Young Adult , Adult , Middle Aged
7.
Euro Surveill ; 28(46)2023 11.
Article in English | MEDLINE | ID: mdl-37971659

ABSTRACT

The SARS-CoV-2 BA.2.86 Omicron subvariant was first detected in wastewater in Sweden in week 31 2023, using 21 highly specific markers from the 50 investigated. We report BA.2.86's introduction and subsequent spread to all 14 regions performing wastewater sampling, and on 70 confirmed COVID-19 cases, along with the emergence of sublineages JN.1 and JN.2. Further, we investigated two novel mutations defining the unique BA.2.86 branching in Sweden. Our integrated approach enabled variant tracking, offering evidence for well-informed public health interventions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , Sweden/epidemiology , COVID-19/epidemiology , Genomics
8.
Influenza Other Respir Viruses ; 17(1): e13069, 2023 01.
Article in English | MEDLINE | ID: mdl-36702797

ABSTRACT

BACKGROUND: In 2021-2022, influenza A viruses dominated in Europe. The I-MOVE primary care network conducted a multicentre test-negative study to measure influenza vaccine effectiveness (VE). METHODS: Primary care practitioners collected information on patients presenting with acute respiratory infection. Cases were influenza A(H3N2) or A(H1N1)pdm09 RT-PCR positive, and controls were influenza virus negative. We calculated VE using logistic regression, adjusting for study site, age, sex, onset date, and presence of chronic conditions. RESULTS: Between week 40 2021 and week 20 2022, we included over 11 000 patients of whom 253 and 1595 were positive for influenza A(H1N1)pdm09 and A(H3N2), respectively. Overall VE against influenza A(H1N1)pdm09 was 75% (95% CI: 43-89) and 81% (95% CI: 45-93) among those aged 15-64 years. Overall VE against influenza A(H3N2) was 29% (95% CI: 12-42) and 25% (95% CI: -41 to 61), 33% (95% CI: 14-49), and 26% (95% CI: -22 to 55) among those aged 0-14, 15-64, and over 65 years, respectively. The A(H3N2) VE among the influenza vaccination target group was 20% (95% CI: -6 to 39). All 53 sequenced A(H1N1)pdm09 viruses belonged to clade 6B.1A.5a.1. Among 410 sequenced influenza A(H3N2) viruses, all but eight belonged to clade 3C.2a1b.2a.2. DISCUSSION: Despite antigenic mismatch between vaccine and circulating strains for influenza A(H3N2) and A(H1N1)pdm09, 2021-2022 VE estimates against circulating influenza A(H1N1)pdm09 were the highest within the I-MOVE network since the 2009 influenza pandemic. VE against A(H3N2) was lower than A(H1N1)pdm09, but at least one in five individuals vaccinated against influenza were protected against presentation to primary care with laboratory-confirmed influenza.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Case-Control Studies , Europe/epidemiology , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Primary Health Care , Vaccination , Vaccine Efficacy , Male , Female , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged
9.
Virus Evol ; 8(2): veac074, 2022.
Article in English | MEDLINE | ID: mdl-36128050

ABSTRACT

Avian influenza A virus (AIV) is ubiquitous in waterfowl and is detected annually at high prevalence in waterfowl during the Northern Hemisphere autumn. Some AIV subtypes are globally common in waterfowl, such as H3N8, H4N6, and H6N2, and are detected in the same populations at a high frequency, annually. In order to investigate genetic features associated to the long-term maintenance of common subtypes in migratory ducks, we sequenced 248 H4 viruses isolated across 8 years (2002-9) from mallards (Anas platyrhynchos) sampled in southeast Sweden. Phylogenetic analyses showed that both H4 and N6 sequences fell into three distinct lineages, structured by year of isolation. Specifically, across the 8 years of the study, we observed lineage replacement, whereby a different HA lineage circulated in the population each year. Analysis of deduced amino acid sequences of the HA lineages illustrated key differences in regions of the globular head of hemagglutinin that overlap with established antigenic sites in homologous hemagglutinin H3, suggesting the possibility of antigenic differences among these HA lineages. Beyond HA, lineage replacement was common to all segments, such that novel genome constellations were detected across years. A dominant genome constellation would rapidly amplify in the duck population, followed by unlinking of gene segments as a result of reassortment within 2-3 weeks following introduction. These data help reveal the evolutionary dynamics exhibited by AIV on both annual and decadal scales in an important reservoir host.

10.
Infect Genet Evol ; 91: 104793, 2021 07.
Article in English | MEDLINE | ID: mdl-33652116

ABSTRACT

The tick-transmitted bacterium Borrelia afzelii consists of a number of antigenically different strains - often defined by outer surface protein C (OspC) genotype - that coexist at stable frequencies in host populations. To investigate how host antibody responses affect strain coexistence, we measured antibody cross-reactivity to three different OspC types (OspC 2, 3 and 9) in three different strains of laboratory mice (BALB/c, C3H and C57BL/6). The extent of cross-reactivity differed between mouse strains, being higher in C3H than BALB/c and C57BL/6. In one of three pairwise comparisons of OspC types (OspC2 vs OspC9), there was evidence for asymmetry of cross-reactivity, with antibodies to OspC2 cross-reacting more strongly with OspC9 than vice versa. These results indicate that the extent of antibody-mediated competition between OspC types may depend on the composition of the host population, and that such competition may be asymmetric. We discuss the implications of these results for understanding the coexistence of OspC types.


Subject(s)
Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Borrelia burgdorferi Group/immunology , Animals , Cross Reactions , Female , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL
11.
Avian Dis ; 63(sp1): 138-144, 2019 03 01.
Article in English | MEDLINE | ID: mdl-31131570

ABSTRACT

The hemagglutination inhibition (HI) assay is commonly used to assess the humoral immune response against influenza A viruses (IAV). However, the microneutralization (MN) assay has been reported to have higher sensitivity when testing sera from humans and other species. Our objective was to determine the agreement between MN and HI assays and compare the proportion of positive samples detected by both methods in sera of mallards primary infected with the A/mallard/MN/Sg-000169/ 2007 (H3N8) virus and subsequently inoculated with homosubtypic or heterosubtypic IAV. Overall, we found poor to fair agreement (prevalence-adjusted bias-adjusted kappa [PABAK], 0.03-0.35) between MN and HI assays in serum samples collected 2 weeks after H3N8 inoculation; the observed agreement increased to moderate or substantial in samples collected 4 to 5 weeks postinoculation (WPI) (PABAK, 0.52-0.75). The MN assay detected a higher proportion of positive samples compared with HI assays in serum samples collected 2 WPI (P = 0.01). This difference was not observed in samples collected 4 WPI. Also, a boosting effect in MN and HI titers was observed when birds were subsequently inoculated with IAV within the same H3 clade. This effect was not observed when birds were challenged with viruses that belong to a different HA clade. In summary, the agreement between assays varies depending on the postinfection sample collection time point and the similarity between the antigens used for the assays. Additionally, subsequent exposure of ducks to homosubtypic or heterosubtypic strains might affect the observed agreement.


¿Los ensayos de microneutralización e inhibición de la hemaglutinación son comparables? Resultados serológicos de patos de collar infectados experimentalmente con influenza. La prueba de inhibición de la hemaglutinación se usa rutinariamente para evaluar la respuesta inmune humoral contra los virus de influenza aviar, sin embargo, se ha reportado que la prueba de microneutralización tiene una mayor sensibilidad cuando se evalúan muestras de suero de humanos u otras especies. Este estudio tuvo como objetivo determinar la concordancia entre las pruebas de microneutralización e inhibición de la hemaglutinación en suero de patos de collar que fueron desafiados con el virus A/ mallard/MN/Sg-000169/2007(H3N8) y re-inoculados con virus de influenza aviar homosubtípicos o heterosubtípicos. Además, se comparó la proporción de muestras positivas detectadas por ambos métodos. En general, se observó un nivel de concordancia pobre a razonable (PABAK = 0.03 - 0.35) entre las pruebas de microneutralización e inhibición de la hemaglutinación en muestras de suero recolectadas dos semanas post-inoculación del virus H3N8. La concordancia se incrementó a moderada o sustancial en muestras recolectadas cuatro o cinco semanas después de la inoculación (PABAK = 0.52 - 0.75). Una mayor proporción de muestras recolectadas a las dos semanas después de la inoculación fueron positivas por microneutralización en comparación con inhibición de la hemaglutinación (P = 0.01), estas diferencias no fueron observadas con las muestras recolectadas a las cuatro semanas después de la inoculación. Adicionalmente, se observó un incremento en los títulos de anticuerpos cuando las aves fueron re-inoculadas con virus de influenza aviar pertenecientes al mismo clado H3 de la hemaglutinina. Este efecto no fue observado en los patos re-inoculados con virus de influenza aviar pertenecientes a un clado distinto. En resumen, la concordancia entre los ensayos varía según el momento de recolección de la muestra y la similitud entre los antígenos utilizados para los ensayos. Además, la re-inoculación de patos con una cepa homosubtípica or heterosubtípica podría afectar el nivel de concordancia observada.


Subject(s)
Ducks , Hemagglutination Inhibition Tests/veterinary , Influenza A Virus, H3N8 Subtype/isolation & purification , Influenza in Birds/diagnosis , Neutralization Tests/veterinary , Animals , Antibodies, Viral/blood , Hemagglutination Inhibition Tests/methods , Neutralization Tests/methods
12.
Virus Evol ; 4(2): vey025, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30151242

ABSTRACT

Influenza A virus (IAV) is ubiquitous in waterfowl. In the northern hemisphere IAV prevalence is highest during the autumn and coincides with a peak in viral subtype diversity. Although haemagglutinin subtypes H1-H12 are associated with waterfowl hosts, subtypes H8-H12 are detected very infrequently. To better understand the role of waterfowl in the maintenance of these rare subtypes, we sequenced H8-H12 viruses isolated from Mallards (Anas platyrhynchos) from 2002 to 2009. These rare viruses exhibited varying ecological and phylodynamic features. The Eurasian clades of H8 and H12 phylogenies were dominated by waterfowl sequences; mostly viruses sequenced in this study. H11, once believed to be a subtype that infected charadriiformes (shorebirds), exhibited patterns more typical of common virus subtypes. Finally, subtypes H9 and H10, which have maintained lineages in poultry, showed markedly different patterns: H10 was associated with all possible NA subtypes and this drove HA lineage diversity within years. Rare viruses belonging to subtypes H8-H12 were highly reassorted, indicating that these rare subtypes are part of the broader IAV pool. Our results suggest that waterfowl play a role in the maintenance of these rare subtypes, but we recommend additional sampling of non-traditional hosts to better understand the reservoirs of these rare viruses.

13.
Emerg Microbes Infect ; 6(12): e110, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29209053

ABSTRACT

Avian influenza viruses pose a serious zoonotic threat, in part because current seasonal influenza virus vaccines only offer strain-specific protection, instead of heterosubtypic or universal protection against influenza virus infection. Understanding the humoral response to vaccination and natural infection in the broadest context possible is important to developing defenses against influenza zoonosis. Protein microarrays are a novel platform well suited to assaying the humoral immune response broadly and efficiently. We developed an influenza virus protein microarray (IVPM) that could be used to assay sera from many species, including humans. Waterfowl such as mallard ducks are natural reservoirs for many influenza A viruses, but their humoral immune response to infection is poorly understood. To establish this technology, we assayed sera from mallards experimentally infected with two low-pathogenic common avian influenza viruses (H3N8 and H4N5) for reactivity to influenza virus hemagglutinin (HA) by IVPM. The IVPM results correlated well with results from an established enzyme-linked immunosorbent assay, supporting the validity of the IVPM as a serological assay in influenza virus research. Interestingly, successive infection with H3N8 followed by H4N5 virus in mallard ducks induced antibodies that were broadly reactive against group 2 hemagglutinins. We also analyzed sera from wild mallards and observed serological evidence for infection in those sera. With serological information, it may be possible to infer infection history of wild avian species and gain a better understanding of the infection dynamics of influenza viruses in their natural reservoir. This might ultimately lead to interventions that enhance our pandemic preparedness.


Subject(s)
Antibodies, Viral/analysis , Influenza A virus/immunology , Influenza in Birds/immunology , Influenza in Birds/virology , Protein Array Analysis/methods , Viral Proteins/immunology , Animals , Animals, Wild/immunology , Animals, Wild/virology , Antibodies, Viral/immunology , Birds/immunology , Birds/virology , Ducks , Enzyme-Linked Immunosorbent Assay , Immunity, Humoral , Influenza A virus/genetics , Influenza A virus/physiology , Viral Proteins/analysis
14.
J Gen Virol ; 98(12): 2937-2949, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29139346

ABSTRACT

Neuraminidase inhibitors are a cornerstone of influenza pandemic preparedness before vaccines can be mass-produced and thus a neuraminidase inhibitor-resistant pandemic is a serious threat to public health. Earlier work has demonstrated the potential for development and persistence of oseltamivir resistance in influenza A viruses exposed to environmentally relevant water concentrations of the drug when infecting mallards, the natural influenza reservoir that serves as the genetic base for human pandemics. As zanamivir is the major second-line neuraminidase inhibitor treatment, this study aimed to assess the potential for development and persistence of zanamivir resistance in an in vivo mallard model; especially important as zanamivir will probably be increasingly used. Our results indicate less potential for development and persistence of resistance due to zanamivir than oseltamivir in an environmental setting. This conclusion is based on: (1) the lower increase in zanamivir IC50 conferred by the mutations caused by zanamivir exposure (2-17-fold); (2) the higher zanamivir water concentration needed to induce resistance (at least 10 µg l-1); (3) the lack of zanamivir resistance persistence without drug pressure; and (4) the multiple resistance-related substitutions seen during zanamivir exposure (V116A, A138V, R152K, T157I and D199G) suggesting lack of one straight-forward evolutionary path to resistance. Our study also adds further evidence regarding the stability of the oseltamivir-induced substitution H275Y without drug pressure, and demonstrates the ability of a H275Y-carrying virus to acquire secondary mutations, further boosting oseltamivir resistance when exposed to zanamivir. Similar studies using influenza A viruses of the N2-phylogenetic group of neuraminidases are recommended.

15.
PLoS Pathog ; 13(6): e1006419, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28640898

ABSTRACT

Our overall hypothesis is that host population immunity directed at multiple antigens will influence the prevalence, diversity and evolution of influenza A virus (IAV) in avian populations where the vast subtype diversity is maintained. To investigate how initial infection influences the outcome of later infections with homologous or heterologous IAV subtypes and how viruses interact through host immune responses, we carried out experimental infections in mallard ducks (Anas platyrhynchos). Mallards were pre-challenged with an H3N8 low-pathogenic IAV and were divided into six groups. At five weeks post H3N8 inoculation, each group was challenged with a different IAV subtype (H4N5, H10N7, H6N2, H12N5) or the same H3N8. Two additional pre-challenged groups were inoculated with the homologous H3N8 virus at weeks 11 and 15 after pre-challenge to evaluate the duration of protection. The results showed that mallards were still resistant to re-infection after 15 weeks. There was a significant reduction in shedding for all pre-challenged groups compared to controls and the outcome of the heterologous challenges varied according to hemagglutinin (HA) phylogenetic relatedness between the viruses used. There was a boost in the H3 antibody titer after re-infection with H4N5, which is consistent with original antigenic sin or antigenic seniority and suggest a putative strategy of virus evasion. These results imply competition between related subtypes that could regulate IAV subtype population dynamics in nature. Collectively, we provide new insights into within-host IAV complex interactions as drivers of IAV antigenic diversity that could allow the circulation of multiple subtypes in wild ducks.


Subject(s)
Ducks/immunology , Ducks/virology , Influenza A virus/immunology , Influenza in Birds/immunology , Influenza in Birds/virology , Animals
16.
PLoS One ; 12(1): e0170335, 2017.
Article in English | MEDLINE | ID: mdl-28107403

ABSTRACT

Mallards are widely recognized as reservoirs for Influenza A viruses (IAV); however, host factors that might prompt seasonality and trends in subtype diversity of IAV such as adaptive heterosubtypic immunity (HSI) are not well understood. To investigate this, we inoculated mallards with a prevailing H3N8 low pathogenic avian influenza virus (LPAIV) subtype in waterfowl to determine if prior infection with this virus would be protective against heterosubtypic infections with the H4N6, H10N7 and H14N5 LPAIV subtypes after one, two and three months, respectively. Also, we investigated the effect of cumulative immunity after sequential inoculation of mallards with these viruses in one-month intervals. Humoral immunity was assessed by microneutralization assays using a subset of representative LPAIV subtypes as antigens. Our results indicate that prior inoculation with the H3N8 virus confers partial protective immunity against subsequent heterosubtypic infections with the robustness of HSI related to the phylogenetic similarity of the HA protein of the strains used. Furthermore, induced HSI was boosted and followed by repeated exposure to more than one LPAIV subtype. Our findings provide further information on the contributions of HSI and its role in the dynamics of IAV subtype diversity in mallards.


Subject(s)
Adaptation, Physiological/immunology , Ducks/virology , Influenza A virus/pathogenicity , Influenza in Birds/virology , Animals , Ducks/immunology , Reverse Transcriptase Polymerase Chain Reaction , Virus Shedding
17.
Appl Environ Microbiol ; 82(4): 1147-1153, 2016 02 15.
Article in English | MEDLINE | ID: mdl-26655759

ABSTRACT

Wild waterfowl are important reservoir hosts for influenza A virus (IAV) and a potential source of spillover infections in other hosts, including poultry and swine. The emergence of highly pathogenic avian influenza (HPAI) viruses, such as H5N1 and H5N8, and subsequent spread along migratory flyways prompted the initiation of several programs in Europe, North America, and Africa to monitor circulation of HPAI and low-pathogenicity precursor viruses (low-pathogenicity avian influenza [LPAI] viruses). Given the costs of maintaining such programs, it is essential to establish best practice for field methodologies to provide robust data for epidemiological interpretation. Here, we use long-term surveillance data from a single site to evaluate the influence of a number of parameters on virus detection and isolation of LPAI viruses. A total of 26,586 samples (oropharyngeal, fecal, and cloacal) collected from wild mallards were screened by real-time PCR, and positive samples were subjected to isolation in embryonated chicken eggs. The LPAI virus detection rate was influenced by the sample type: cloacal/fecal samples showed a consistently higher detection rate and lower cycle threshold (Ct) value than oropharyngeal samples. Molecular detection was more sensitive than isolation, and virus isolation success was proportional to the number of RNA copies in the sample. Interestingly, for a given Ct value, the isolation success was lower in samples from adult birds than in those from juveniles. Comparing the results of specific real-time reverse transcriptase (RRT)-PCRs and of isolation, it was clear that coinfections were common in the investigated birds. The effects of sample type and detection methods warrant some caution in interpretation of the surveillance data.


Subject(s)
Influenza A virus/isolation & purification , Influenza in Birds/diagnosis , Influenza in Birds/epidemiology , Molecular Diagnostic Techniques/methods , Specimen Handling/methods , Virus Cultivation/methods , Animals , Cloaca/virology , Ducks , Feces/virology , Oropharynx/virology , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Sweden
19.
PLoS One ; 10(8): e0134484, 2015.
Article in English | MEDLINE | ID: mdl-26241048

ABSTRACT

Influenza serology has traditionally relied on techniques such as hemagglutination inhibition, microneutralization, and ELISA. These assays are complex, challenging to implement in a format allowing detection of several types of antibody-analyte interactions at once (multiplex), and troublesome to implement in the field. As an alternative, we have developed a hemagglutinin microarray on the Arrayed Imaging Reflectometry (AIR) platform. AIR provides sensitive, rapid, and label-free multiplex detection of targets in complex analyte samples such as serum. In preliminary work, we demonstrated the application of this array to the testing of human samples from a vaccine trial. Here, we report the application of an expanded label-free hemagglutinin microarray to the analysis of avian serum samples. Samples from influenza virus challenge experiments in mallards yielded strong, selective detection of antibodies to the challenge antigen in most cases. Samples acquired in the field from mallards were also analyzed, and compared with viral hemagglutinin inhibition and microneutralization assays. We find that the AIR hemagglutinin microarray can provide a simple and robust alternative to standard methods, offering substantially greater information density from a simple workflow.


Subject(s)
Ducks/virology , Epidemiological Monitoring/veterinary , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza in Birds/epidemiology , Animals , Antibodies, Viral/immunology , Cross Reactions , Enzyme-Linked Immunosorbent Assay/methods , Hemagglutination Inhibition Tests , Influenza in Birds/virology
20.
J Gen Virol ; 96(8): 2050-2060, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25904147

ABSTRACT

Low pathogenic avian influenza A viruses (IAVs) have a natural host reservoir in wild waterbirds and the potential to spread to other host species. Here, we investigated the evolutionary, spatial and temporal dynamics of avian IAVs in Eurasian wild birds. We used whole-genome sequences collected as part of an intensive long-term Eurasian wild bird surveillance study, and combined this genetic data with temporal and spatial information to explore the virus evolutionary dynamics. Frequent reassortment and co-circulating lineages were observed for all eight genomic RNA segments over time. There was no apparent species-specific effect on the diversity of the avian IAVs. There was a spatial and temporal relationship between the Eurasian sequences and significant viral migration of avian IAVs from West Eurasia towards Central Eurasia. The observed viral migration patterns differed between segments. Furthermore, we discuss the challenges faced when analysing these surveillance and sequence data, and the caveats to be borne in mind when drawing conclusions from the apparent results of such analyses.


Subject(s)
Evolution, Molecular , Genome, Viral , Influenza A virus/genetics , Influenza in Birds/virology , Phylogeny , Animal Migration , Animals , Animals, Wild/virology , Birds/physiology , Birds/virology , Influenza A virus/classification , Influenza A virus/isolation & purification , Influenza in Birds/physiopathology , Molecular Sequence Data , Phylogeography , RNA, Viral/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...