Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Mol Biosci ; 11: 1356500, 2024.
Article in English | MEDLINE | ID: mdl-38323074

ABSTRACT

Intracellular organelle communication enables the maintenance of tissue homeostasis and health through synchronized adaptive processes triggered by environmental cues. Mitochondrial-Endoplasmic Reticulum (ER) communication sustains cellular fitness by adjusting protein synthesis and degradation, and metabolite and protein trafficking through organelle membranes. Mitochondrial-ER communication is bidirectional and requires that the ER-components of the Integrated Stress Response signal to mitochondria upon activation and, likewise, mitochondria signal to the ER under conditions of metabolite and protein overload to maintain proper functionality and ensure cellular survival. Declines in the mitochondrial-ER communication occur upon ageing and correlate with the onset of a myriad of heterogeneous age-related diseases such as obesity, type 2 diabetes, cancer, or neurodegenerative pathologies. Thus, the exploration of the molecular mechanisms of mitochondrial-ER signaling and regulation will provide insights into the most fundamental cellular adaptive processes with important therapeutical opportunities. In this review, we will discuss the pathways and mechanisms of mitochondrial-ER communication at the mitochondrial-ER interface and their implications in health and disease.

2.
bioRxiv ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38293190

ABSTRACT

In response to cold, mammals activate brown fat for respiratory-dependent thermogenesis reliant on the electron transport chain (1, 2). Yet, the structural basis of respiratory complex adaptation to cold remains elusive. Herein we combined thermoregulatory physiology and cryo-EM to study endogenous respiratory supercomplexes exposed to different temperatures. A cold-induced conformation of CI:III 2 (termed type 2) was identified with a ∼25° rotation of CIII 2 around its inter-dimer axis, shortening inter-complex Q exchange space, and exhibiting different catalytic states which favor electron transfer. Large-scale supercomplex simulations in lipid membrane reveal how unique lipid-protein arrangements stabilize type 2 complexes to enhance catalytic activity. Together, our cryo-EM studies, multiscale simulations and biochemical analyses unveil the mechanisms and dynamics of respiratory adaptation at the structural and energetic level.

3.
Mol Cell ; 83(16): 2832-2833, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37595551

ABSTRACT

In this issue, Xu and Pan et al1 report a glucose-sensing and activation mechanism of mTORC1 through the glycosyltransferase OGT, which activates Raptor, allowing lysosomal targeting of mTORC1 to promote cell proliferation.


Subject(s)
Glycosyltransferases , TOR Serine-Threonine Kinases , TOR Serine-Threonine Kinases/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Cell Cycle , Cell Proliferation
4.
Cell Metab ; 35(8): 1356-1372.e5, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37473754

ABSTRACT

Liver mitochondria undergo architectural remodeling that maintains energy homeostasis in response to feeding and fasting. However, the specific components and molecular mechanisms driving these changes and their impact on energy metabolism remain unclear. Through comparative mouse proteomics, we found that fasting induces strain-specific mitochondrial cristae formation in the liver by upregulating MIC19, a subunit of the MICOS complex. Enforced MIC19 expression in the liver promotes cristae formation, mitochondrial respiration, and fatty acid oxidation while suppressing gluconeogenesis. Mice overexpressing hepatic MIC19 show resistance to diet-induced obesity and improved glucose homeostasis. Interestingly, MIC19 overexpressing mice exhibit elevated energy expenditure and increased pedestrian locomotion. Metabolite profiling revealed that uracil accumulates in the livers of these mice due to increased uridine phosphorylase UPP2 activity. Furthermore, uracil-supplemented diet increases locomotion in wild-type mice. Thus, MIC19-induced mitochondrial cristae formation in the liver increases uracil as a signal to promote locomotion, with protective effects against diet-induced obesity.


Subject(s)
Energy Metabolism , Liver , Walking , Mitochondria, Liver/metabolism , Liver/metabolism , Mitochondrial Proteins/metabolism , Proteome/metabolism , Animals , Mice , Diet, High-Fat , Weight Gain , Uracil/metabolism
5.
Nat Rev Mol Cell Biol ; 23(12): 817-835, 2022 12.
Article in English | MEDLINE | ID: mdl-35804199

ABSTRACT

Mitochondrial energetic adaptations encompass a plethora of conserved processes that maintain cell and organismal fitness and survival in the changing environment by adjusting the respiratory capacity of mitochondria. These mitochondrial responses are governed by general principles of regulatory biology exemplified by changes in gene expression, protein translation, protein complex formation, transmembrane transport, enzymatic activities and metabolite levels. These changes can promote mitochondrial biogenesis and membrane dynamics that in turn support mitochondrial respiration. The main regulatory components of mitochondrial energetic adaptation include: the transcription coactivator peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC1α) and associated transcription factors; mTOR and endoplasmic reticulum stress signalling; TOM70-dependent mitochondrial protein import; the cristae remodelling factors, including mitochondrial contact site and cristae organizing system (MICOS) and OPA1; lipid remodelling; and the assembly and metabolite-dependent regulation of respiratory complexes. These adaptive molecular and structural mechanisms increase respiration to maintain basic processes specific to cell types and tissues. Failure to execute these regulatory responses causes cell damage and inflammation or senescence, compromising cell survival and the ability to adapt to energetically demanding conditions. Thus, mitochondrial adaptive cellular processes are important for physiological responses, including to nutrient availability, temperature and physical activity, and their failure leads to diseases associated with mitochondrial dysfunction such as metabolic and age-associated diseases and cancer.


Subject(s)
Adaptation, Physiological , Mitochondria , Mitochondria/metabolism , Adaptation, Physiological/physiology , Mitochondrial Membranes/metabolism , Transcription Factors/metabolism , Signal Transduction , Mitochondrial Proteins/genetics
6.
EMBO J ; 41(12): e111290, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35466422

ABSTRACT

The ability of immune cells to penetrate affected tissues is highly dependent on energy provided by mitochondria, yet their involvement in promoting migration remains unclear. Recent work by Emtenani et al (2022) describes a nuclear Atossa-Porthos axis that adjusts transcription and translation of a small subset of OXPHOS genes to increase mitochondrial bioenergetics and allow macrophage tissue invasion in flies.


Subject(s)
Mitochondria , Oxidative Phosphorylation , Cell Nucleus/metabolism , Energy Metabolism , Macrophages/metabolism , Mitochondria/metabolism
7.
Nat Chem Biol ; 17(6): 703-710, 2021 06.
Article in English | MEDLINE | ID: mdl-33723432

ABSTRACT

The protein complexes of the mitochondrial electron transport chain exist in isolation and in higher order assemblies termed supercomplexes (SCs) or respirasomes (SC I+III2+IV). The association of complexes I, III and IV into the respirasome is regulated by unknown mechanisms. Here, we designed a nanoluciferase complementation reporter for complex III and IV proximity to determine in vivo respirasome levels. In a chemical screen, we found that inhibitors of the de novo pyrimidine synthesis enzyme dihydroorotate dehydrogenase (DHODH) potently increased respirasome assembly and activity. By-passing DHODH inhibition via uridine supplementation decreases SC assembly by altering mitochondrial phospholipid composition, specifically elevated peroxisomal-derived ether phospholipids. Cell growth rates upon DHODH inhibition depend on ether lipid synthesis and SC assembly. These data reveal that nucleotide pools signal to peroxisomes to modulate synthesis and transport of ether phospholipids to mitochondria for SC assembly, which are necessary for optimal cell growth in conditions of nucleotide limitation.


Subject(s)
Electron Transport , Nucleotides/chemistry , Peroxisomes/chemistry , Phospholipids/chemistry , Dihydroorotate Dehydrogenase , Electron Transport/genetics , Electron Transport Complex III/genetics , Electron Transport Complex IV/genetics , High-Throughput Nucleotide Sequencing , Humans , Lipids/biosynthesis , Metabolomics , Mitochondria/metabolism , Molecular Structure , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxygen Consumption , Phospholipid Ethers , Uridine/metabolism
8.
Cell Metab ; 33(3): 598-614.e7, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33592173

ABSTRACT

The architecture of cristae provides a spatial mitochondrial organization that contains functional respiratory complexes. Several protein components including OPA1 and MICOS complex subunits organize cristae structure, but upstream regulatory mechanisms are largely unknown. Here, in vivo and in vitro reconstitution experiments show that the endoplasmic reticulum (ER) kinase PERK promotes cristae formation by increasing TOM70-assisted mitochondrial import of MIC19, a critical subunit of the MICOS complex. Cold stress or ß-adrenergic stimulation activates PERK that phosphorylates O-linked N-acetylglucosamine transferase (OGT). Phosphorylated OGT glycosylates TOM70 on Ser94, enhancing MIC19 protein import into mitochondria and promoting cristae formation and respiration. In addition, PERK-activated OGT O-GlcNAcylates and attenuates CK2α activity, which mediates TOM70 Ser94 phosphorylation and decreases MIC19 mitochondrial protein import. We have identified a cold-stress inter-organelle PERK-OGT-TOM70 axis that increases cell respiration through mitochondrial protein import and subsequent cristae formation. These studies have significant implications in cellular bioenergetics and adaptations to stress conditions.


Subject(s)
Mitochondrial Precursor Protein Import Complex Proteins/metabolism , Mitochondrial Proteins/metabolism , N-Acetylglucosaminyltransferases/metabolism , eIF-2 Kinase/metabolism , Adipocytes, Brown/cytology , Adipocytes, Brown/drug effects , Adipocytes, Brown/metabolism , Animals , Casein Kinase II/metabolism , Cold Temperature , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Glycosylation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Precursor Protein Import Complex Proteins/genetics , Mitochondrial Proteins/genetics , N-Acetylglucosaminyltransferases/genetics , Phosphorylation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Transport , RNA, Guide, Kinetoplastida/metabolism , eIF-2 Kinase/antagonists & inhibitors , eIF-2 Kinase/deficiency , eIF-2 Kinase/genetics
9.
Nat Metab ; 3(1): 33-42, 2021 01.
Article in English | MEDLINE | ID: mdl-33462515

ABSTRACT

Mitochondrial diseases (MDs) are a heterogeneous group of disorders resulting from mutations in nuclear or mitochondrial DNA genes encoding mitochondrial proteins1,2. MDs cause pathologies with severe tissue damage and ultimately death3,4. There are no cures for MDs and current treatments are only palliative5-7. Here we show that tetracyclines improve fitness of cultured MD cells and ameliorate disease in a mouse model of Leigh syndrome. To identify small molecules that prevent cellular damage and death under nutrient stress conditions, we conduct a chemical high-throughput screen with cells carrying human MD mutations and discover a series of antibiotics that maintain survival of various MD cells. We subsequently show that a sub-library of tetracycline analogues, including doxycycline, rescues cell death and inflammatory signatures in mutant cells through partial and selective inhibition of mitochondrial translation, resulting in an ATF4-independent mitohormetic response. Doxycycline treatment strongly promotes fitness and survival of Ndufs4-/- mice, a preclinical Leigh syndrome mouse model8. A proteomic analysis of brain tissue reveals that doxycycline treatment largely prevents neuronal death and the accumulation of neuroimmune and inflammatory proteins in Ndufs4-/- mice, indicating a potential causal role for these proteins in the brain pathology. Our findings suggest that tetracyclines deserve further evaluation as potential drugs for the treatment of MDs.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Mitochondrial Diseases/drug therapy , Tetracyclines/therapeutic use , Activating Transcription Factor 4/metabolism , Animals , Brain/pathology , Cells, Cultured , Disease Models, Animal , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , High-Throughput Screening Assays , Humans , Leigh Disease/drug therapy , Leigh Disease/pathology , Life Expectancy , Metabolomics , Mice , Mice, Knockout , Mitochondrial Diseases/mortality , Mitochondrial Diseases/pathology , Physical Fitness , Survival Analysis
10.
J Biol Chem ; 296: 100205, 2021.
Article in English | MEDLINE | ID: mdl-33334880

ABSTRACT

Acetylation is known to regulate the activity of cytosolic phosphoenolpyruvate carboxykinase (PCK1), a key enzyme in gluconeogenesis, by promoting the reverse reaction of the enzyme (converting phosphoenolpyruvate to oxaloacetate). It is also known that the histone acetyltransferase p300 can induce PCK1 acetylation in cells, but whether that is a direct or indirect function was not known. Here we initially set out to determine whether p300 can acetylate directly PCK1 in vitro. We report that p300 weakly acetylates PCK1, but surprisingly, using several techniques including protein crystallization, mass spectrometry, isothermal titration calorimetry, saturation-transfer difference nuclear magnetic resonance and molecular docking, we found that PCK1 is also able to acetylate itself using acetyl-CoA independently of p300. This reaction yielded an acetylated recombinant PCK1 with a 3-fold decrease in kcat without changes in Km for all substrates. Acetylation stoichiometry was determined for 14 residues, including residues lining the active site. Structural and kinetic analyses determined that site-directed acetylation of K244, located inside the active site, altered this site and rendered the enzyme inactive. In addition, we found that acetyl-CoA binding to the active site is specific and metal dependent. Our findings provide direct evidence for acetyl-CoA binding and chemical reaction with the active site of PCK1 and suggest a newly discovered regulatory mechanism of PCK1 during metabolic stress.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Acetyl Coenzyme A/metabolism , Acetylation , Catalytic Domain , Enzyme Activation , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Molecular Docking Simulation , Phosphoenolpyruvate Carboxykinase (GTP)/chemistry
11.
Mol Cell ; 71(5): 718-732.e9, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30193097

ABSTRACT

Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is considered a gluconeogenic enzyme; however, its metabolic functions and regulatory mechanisms beyond gluconeogenesis are poorly understood. Here, we describe that dynamic acetylation of PCK1 interconverts the enzyme between gluconeogenic and anaplerotic activities. Under high glucose, p300-dependent hyperacetylation of PCK1 did not lead to protein degradation but instead increased the ability of PCK1 to perform the anaplerotic reaction, converting phosphoenolpyruvate to oxaloacetate. Lys91 acetylation destabilizes the active site of PCK1 and favors the reverse reaction. At low energy input, we demonstrate that SIRT1 deacetylates PCK1 and fully restores the gluconeogenic ability of PCK1. Additionally, we found that GSK3ß-mediated phosphorylation of PCK1 decreases acetylation and increases ubiquitination. Biochemical evidence suggests that serine phosphorylation adjacent to Lys91 stimulates SIRT1-dependent deacetylation of PCK1. This work reveals an unexpected capacity of hyperacetylated PCK1 to promote anaplerotic activity, and the intersection of post-translational control of PCK1 involving acetylation, phosphorylation, and ubiquitination.


Subject(s)
Gluconeogenesis/physiology , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Acetylation , Animals , Catalytic Domain/physiology , Cell Line , Cell Line, Tumor , Female , Glycogen Synthase Kinase 3 beta/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Processing, Post-Translational/physiology , Sirtuin 1/metabolism , Ubiquitination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...