Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732473

ABSTRACT

Green algae blooms of the genus Ulva are occurring globally and are primarily attributed to anthropogenic factors. At Los Tubos beach in Algarrobo Bay along the central Chilean coast, there have been blooms of these algae that persist almost year-round over the past 20 years, leading to environmental, economic, and social issues that affect the local government and communities. The objective of this study was to characterize the species that form these green tides based on a combination of ecological, morpho-anatomical, and molecular information. For this purpose, seasonal surveys of beached algal fronds were conducted between 2021 and 2022. Subsequently, the sampled algae were analyzed morphologically and phylogenetically using the molecular markers ITS1 and tufA, allowing for the identification of at least five taxa. Of these five taxa, three (U. stenophylloides, U. uncialis, U. australis) have laminar, foliose, and distromatic morphology, while the other two (U. compressa, U. aragoensis) have tubular, filamentous, and monostromatic fronds. Intertidal surveys showed that U. stenophylloides showed the highest relative coverage throughout the seasons and all intertidal levels, followed by U. uncialis. Therefore, we can establish that the green tides on the coast of Algarrobo in Chile are multispecific, with differences in relative abundance during different seasons and across the intertidal zone, opening opportunities for diverse future studies, ranging from ecology to algal biotechnology.

2.
Mar Environ Res ; 192: 106229, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37866196

ABSTRACT

Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants that frequently co-occur in coastal environments. These contaminants can have negative impacts on the health and stability of marine and coastal ecosystems, affecting both the organisms themselves and the humans who consume them. A coastal industrial park in central Chile, housing a coal thermal power plant and other industrial activities, contributes to such pollution of coastal waters; however, neither the spatial alongshore distribution of heavy metals and PAHs, nor an assessment of their ecological effects on the biota have been systematically documented to date. In this paper, we present evidence regarding the direct negative effect of contamination by heavy metals and PAHs on the early life stages of kelps-being extremely harmful to their population persistence near highly polluted sites-as well as the indirect effects of their transference through the food web to higher trophic levels, leading to negative consequences for the feeding intake, growth, fertility, and larval development of marine herbivores that consume the contaminated seaweed. Likewise, the dispersion of contaminants by ocean currents can exacerbate the effects of pollution, having an adverse influence on marine ecosystem health even at sites far from the pollution source. Therefore, it is necessary to investigate the distribution patterns and extent of pollution along the coast to understand the impact of heavy metals and PAHs pollution on seaweed populations and the food web. It is considered critical for the development of effective environmental policies and regulations to protect these ecosystems and the people who depend on them.


Subject(s)
Kelp , Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Seaweed , Water Pollutants, Chemical , Humans , Ecosystem , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Monitoring , Herbivory , Metals, Heavy/toxicity , Metals, Heavy/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Geologic Sediments
3.
Molecules ; 27(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36296423

ABSTRACT

Seaweed aquaculture is affected by natural and anthropogenic stressors, which put the biomass productivity of the cultures at risk. Seaweed biomass for commercial purposes, principally in pharmaceutical and/or nutraceutical applications, needs to be free of pollutants; therefore, controlled cultures have relevance in regulating the quality of biomass. The aim of this work was to demonstrate the successful utilization of controlled outdoor cultures to remove excess heavy metal accumulation in Gracilaria chilensis, an important commercial seaweed farming model. Specifically, we designed a simple and operational heavy metal depuration protocol, utilizing seawater and tap water removal, which permitted the concentration reduction of 10 heavy metals, including As, Cu, and Cd but not Zn, from the biomass at 7 days of culture. The percentage of depuration of the heavy metals ranged from 32 to 92% at 7 days, which was maintained throughout 21 days of culture. During the culture period, the monitored physicochemical parameters (temperature, salinity, and dissolved oxygen, among others) remained stable, with an increase in the daily growth rate (DGR% d-1) of the biomass recorded after 14 days of culture. Consequently, the experimental setup was successful for heavy metal depuration, which highlights the importance of controlled outdoor cultures as important tools of sustainability.


Subject(s)
Environmental Pollutants , Gracilaria , Metals, Heavy , Rhodophyta , Seaweed , Water Pollutants, Chemical , Cadmium , Water , Oxygen , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis
4.
Toxics ; 9(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34678940

ABSTRACT

PAHs and heavy metals are characteristic pollutants in urbanized coastal areas, especially those with industrial activity. Given this context and the ability of Macrocystis pyrifera to drift when detached and provide trophic subsidy in coastal systems, we analyzed the potential transfer of pollutants to the herbivore Tetrapygus niger, through diet, in an industrialized coastal zone in Central Chile (Caleta Horcón) and characterized the impacted zone using diverse polluted ecotoxicological indices. For this purpose, a culture experiment was conducted where M. pyrifera individuals from Algarrobo (control site) were cultivated in Caleta Horcón and then used as food for T. niger. The contents of both PAHs and heavy metal contents were subsequently determined in algal tissue and sea urchin gonads as well as in the seawater. The results show that algae cultivated in Caleta Horcón had higher concentrations of naphthalene (NAF) compared to those from a low industrial impact zone (Algarrobo) (2.5 and 1.8 mg kg-1, respectively). The concentrations of Cu, As, and Cd were higher in Caleta Horcón than in Algarrobo in both M. pyrifera and T. niger. For all metals, including Pb, higher concentrations were present in T. niger than in M. pyrifera (between 5 and 798 times higher). Additionally, as indicated by the toxicological indices MPI (0.00804) and PLI (10.89), Caleta Horcón is highly contaminated with metals compared to Algarrobo (0.0006 and 0.015, respectively). Finally, the bioconcentration factor (BCF) and trophic transfer factor (TTF) values were greater than one in most cases, with values in Caleta Horcón exceeding those in Algarrobo by one or two orders of magnitude. This study provides evidence that Caleta Horcón is a highly impacted zone (HIZ) compared to Algarrobo, in addition to evidence that the biomagnification of certain pollutants, including the possible responses to contaminants, are apparently not exclusively transferred to T. niger through diet.

5.
Toxics ; 9(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34437508

ABSTRACT

The study of pollution effects in the marine environment has become important in recent decades, and the exposure to simultaneous pollutants has become especially relevant. Indeed, the study of key organisms, such as ecosystem engineers, can show a broader view of the effects of pollutants. In this context, we evaluate in situ the effects of a short (7-day) pollution pulse of combined solutions of heavy metals and polycyclic aromatic hydrocarbons (PAHs) (Cu + PAHs, Cd + PAHs, Cu + Cd, and Cu + Cd + PAHs) on the development and morphological features of Macrocystis pyrifera sporophytes over a period of 90 days. Additionally, we determined the effects on the community structure associated with this kelp. This study evidenced a smaller number of blades and a decreased size of blades and holdfasts, as well as the death of individuals exposed to a secondary mix of metals (Cu + Cd) and a tertiary mix of pollutants (Cu + Cd + PAHs). Regarding the effects on the accompanying fauna, low richness and diversity were registered. M. pyrifera grazers, according to the mixture of pollutants, were either absent or diminished. These results show that the pulse of contamination in the early stages of M. pyrifera negatively affects its development and morphometry, as well as its role as an ecosystem engineer, due to a negative alteration in the species composition.

6.
Mar Pollut Bull ; 167: 112365, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33882333

ABSTRACT

Macrocystis pyrifera reaches distant areas after detachment, accumulate heavy metals, and serve as trophic subsidy. In this context, effects on both adults and larvae of Tetrapygus niger fed with polluted kelps were determined by assessing growth, fertility, and early larval development. Results revealed that sea urchins fed with polluted kelps from highly impacted zone (HIZ) showed a lower growth (3.6% gained weight) and gamete release (358 cells mL-1) than those fed with non-impacted kelps (NIZ) (19.3% and 945 cells mL-1). The HIZ treatment showed a developmental delay in comparison to NIZ, accounted mainly by the abundance of malformed 2-arm pluteus larvae (10-15%) during most of the culture. Malformed 4-arm pluteus larvae showed a constant increase, reaching 37% at the end of the culture. Thus, the pollutants ingested by sea urchins can be transferred to their offspring and cause negative effects in their early development, categorizing M. pyrifera as a pollutant carrier.


Subject(s)
Herbivory , Sea Urchins , Animals , Eating , Fertility , Niger
SELECTION OF CITATIONS
SEARCH DETAIL
...