Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 233: 107455, 2023 May.
Article in English | MEDLINE | ID: mdl-36893565

ABSTRACT

BACKGROUND AND OBJECTIVE: Neurodevelopmental assessment enables the identification of infant developmental disorders in the first months of life. Thus, the appropriate therapy can be initiated promptly, increasing the chances for correct motor function. Posture asymmetry is one of the crucial aspects evaluated during the diagnosis. Available diagnostic methods are mainly based on qualitative assessment and subjective expert opinion. Current trends in computer-aided diagnosis focus mostly on analyzing infants' spontaneous movement videos using artificial intelligence methods, based primarily on limbs movement. This study aims to develop an automatic method for determining the infant's positional asymmetry in a video recording using computer image processing methods. METHODS: We made the first attempt to determine positional preferences in a recording automatically. We proposed six quantitative features describing trunk and head position based on pose estimation. As a result of our algorithm, we estimate the percentage of each trunk position in a recording using known machine learning methods. The training and test sets were created from 51 recordings collected during our research and 12 recordings from the benchmark dataset evaluated by five of our experts. The method was assessed using the leave-one-subject-out cross-validation method for ground truth video fragments and different classifiers. Log loss for multiclass classification and ROC AUC were determined to evaluate the results for both our and benchmark datasets. RESULTS: In a classification of the shortened side, the QDA classifier yields the most accurate results, gaining the lowest log loss of 0.552 and AUC of 0.913. The high accuracy (92.03) and sensitivity (93.26) confirm the method's potential in screening for asymmetry. CONCLUSIONS: The method allows obtaining quantitative information about positional preference, a valuable extension of basic diagnostics without additional tools and procedures. In combination with an analysis of limbs movement, it may constitute one of the elements of a novelty computer-aided infants' diagnosis system in the future.


Subject(s)
Artificial Intelligence , Posture , Humans , Infant , Movement , Diagnosis, Computer-Assisted/methods , Algorithms
2.
Sensors (Basel) ; 20(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105787

ABSTRACT

Observation of neuromotor development at an early stage of an infant's life allows for early diagnosis of deficits and the beginning of the therapeutic process. General movement assessment is a method of spontaneous movement observation, which is the foundation for contemporary attempts at objectification and computer-aided diagnosis based on video recordings' analysis. The present study attempts to automatically detect writhing movements, one of the normal general movement categories presented by newborns in the first weeks of life. A set of 31 recordings of newborns on the second and third day of life was divided by five experts into videos containing writhing movements (with occurrence time) and poor repertoire, characterized by a lower quality of movement in relation to the norm. Novel, objective pose-based features describing the scope, nature, and location of each limb's movement are proposed. Three machine learning algorithms are evaluated in writhing movements' detection in leave-one-out cross-validation for different feature extraction time windows and overlapping time. The experimental results make it possible to indicate the optimal parameters for which 80% accuracy was achieved. Based on automatically detected writhing movement percent in the video, infant movements are classified as writhing movements or poor repertoire with an area under the ROC (receiver operating characteristics) curve of 0.83.


Subject(s)
Diagnosis, Computer-Assisted , Machine Learning , Movement , Algorithms , Humans , Infant, Newborn , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...