Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 61(10): 2635-44, 2010.
Article in English | MEDLINE | ID: mdl-20453338

ABSTRACT

The purpose of this paper to present a case study on how to address the odor problem from secondary sources within a municipal wastewater treatment plant (WWTP) by first identifying the locations of the problem and second by evaluating alternative treatment technologies. The WWTP of Chania is a typical 100,000 equivalent inhabitants-facility in a warm semi-arid environment which is located close to residential areas. The installation of a chemical scrubber to control major odor sources within the plant did not succeed in eliminating complaints by nearby residents, and additional measures were required. In this case study we identify all major secondary sources of odor within the plant and evaluate the effectiveness of the different technologies that were employed to address this problem (cover installation, gas and liquid phase oxidation, activated carbon/permanganate absorption, FeCl(3) addition). In particular, we found that installation of covers and reduction of turbulence at two key locations within the WWTP was the best strategy to combat unpleasant odors. Furthermore, when the central chemical scrubber was near capacity the installation of an auxiliary system of activated carbon absorption coupled to permanganate oxidation was deemed to be a safe approach. However, despite the very high removal efficiency (>99.5%) of the unit, the addition of FeCl(3) in the liquid phase was required in order to achieve complete deodorization (below the human odor threshold level).


Subject(s)
Deodorants , Odorants , Residential Facilities , Smell , Waste Disposal, Fluid/methods , Water Purification/methods , Chlorides , Environment , Ferric Compounds , Greece , Humans , Hydrogen Peroxide , Hydrogen Sulfide , Local Government , Safety , Waste Disposal, Fluid/standards , Water Pollution/prevention & control , Water Purification/standards
2.
J Environ Qual ; 39(6): 2170-8, 2010.
Article in English | MEDLINE | ID: mdl-21284315

ABSTRACT

Piggeries are known for their nuisance odors, creating problems for workers and nearby residents. Chemical substances that contribute to these odors include sulfurous organic compounds, hydrogen sulfide, phenols and indoles, ammonia, volatile amines, and volatile fatty acids. In this work, daily mean concentrations of ammonia (NH3) and hydrogen sulfide (H2S) were measured by hand-held devices. Measurements were taken in several places within the facility (farrowing to finishing rooms). Hydrogen sulfide concentration was found to be 40 to 50 times higher than the human odor threshold value in the nursery and fattening room, resulting in strong nuisance odors. Ammonia concentrations ranged from 2 to 18 mL m(-3) and also contributed to the total odor nuisance. Emission data from various chambers of the pig farm were used with the dispersion model AERMOD to determine the odor nuisance caused due to the presence of H2S and NH3 to receptors at various distances from the facility. Because just a few seconds of exposure can cause an odor nuisance, a "peak-to-mean" ratio was used to predict the maximum odor concentrations. Several scenarios were examined using the modified AERMOD program, taking into account the complex terrain around the pig farm.


Subject(s)
Agriculture , Air Movements , Odorants , Swine , Air Pollutants , Ammonia , Animals , Environmental Monitoring , Housing, Animal , Hydrogen Sulfide , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...