Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991560

ABSTRACT

To quantify selection acting on a trait, methods have been developed using either within or between-species variation. However, methods using within-species variation do not integrate the changes at the macroevolutionary scale. Conversely, current methods using between-species variation usually discard within-species variation, thus not accounting for processes at the micro-evolutionary scale. The main goal of this study is to define a neutrality index for a quantitative trait, by combining withinand between-species variation. This neutrality index integrates nucleotide polymorphism and divergence for normalizing trait variation. As such, it does not require estimation of population size nor of time of speciation for normalization. Our index can be used to seek deviation from the null model of neutral evolution, and test for diversifying selection. Applied to brain mass and body mass at the mammalian scale, we show that brain mass is under diversifying selection. Finally, we show that our test is not sensitive to the assumption that population sizes, mutation rates and generation time are constant across the phylogeny, and automatically adjust for it.

2.
Theor Popul Biol ; 142: 57-66, 2021 12.
Article in English | MEDLINE | ID: mdl-34563555

ABSTRACT

Molecular sequences are shaped by selection, where the strength of selection relative to drift is determined by effective population size (Ne). Populations with high Ne are expected to undergo stronger purifying selection, and consequently to show a lower substitution rate for selected mutations relative to the substitution rate for neutral mutations (ω). However, computational models based on biophysics of protein stability have suggested that ω can also be independent of Ne. Together, the response of ω to changes in Ne depends on the specific mapping from sequence to fitness. Importantly, an increase in protein expression level has been found empirically to result in decrease of ω, an observation predicted by theoretical models assuming selection for protein stability. Here, we derive a theoretical approximation for the response of ω to changes in Ne and expression level, under an explicit genotype-phenotype-fitness map. The method is generally valid for additive traits and log-concave fitness functions. We applied these results to protein undergoing selection for their conformational stability and corroborate out findings with simulations under more complex models. We predict a weak response of ω to changes in either Ne or expression level, which are interchangeable. Based on empirical data, we propose that fitness based on the conformational stability may not be a sufficient mechanism to explain the empirically observed variation in ω across species. Other aspects of protein biophysics might be explored, such as protein-protein interactions, which can lead to a stronger response of ω to changes in Ne.


Subject(s)
Models, Genetic , Selection, Genetic , Evolution, Molecular , Mutation , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...