Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 665: 968-981, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30790765

ABSTRACT

Obtaining representative hydrometric values is essential for characterizing extreme events, hydrological dynamics and detecting possible changes on the long-term hydrology. Reliability of streamflow data requires a temporal continuity and a maintenance of the gauging stations, which data are affected by epistemic and random sources of error. An assessment of discharge meterings' and stage-discharge rating curves' uncertainties were carried out by comparing the accuracy of the measuring instruments of two different hydrometric networks (i.e., one analogical and one digital) established in the same river location at the Mediterranean island of Mallorca. Furthermore, the effects of such uncertainties were assessed on the hydrological dynamics, considering the significant global change impacts beset this island. Evaluation was developed at four representative gauging stations of the hydrographic network with analogic (≈40 years) and digital (≈10 years) data series. The study revealed that the largest source of uncertainty in the analogical (28 to 274%) and in the digital (17-37%) networks were the stage-discharge rating curves. Their impact on the water resources was also evaluated at the event and annual scales, resulting in an average difference of water yields of 183% and 142% respectively. Such improvement on the comprehension of hydrometric networks uncertainties will dramatically benefit the interpretation of the long-term streamflow by providing better insights into the hydrologic and flood hazard planning, management and modelling.

2.
Sci Total Environ ; 647: 1421-1432, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30180348

ABSTRACT

Soil water-content (SWC) variability in forest ecosystems is affected by complex interactions between climate, topography, forest structure and soil factors. However, detailed studies taking into account the combined effects of these factors are scarce. This study's main aims were to examine the control that throughfall exerts on local spatial variation of near-surface soil water-content and to combine this information with forest structure and soil characteristics, in order to analyze all their effects together. Two stands located in the Vallcebre Research Catchments (NE Spain) were studied: one dominated by Quercus pubescens and the other by Pinus sylvestris. Throughfall and the related shallow SWC were monitored in each plot in 20 selected locations. The main characteristics of the nearest tree and soil parameters were also measured. The results indicated that mean SWC increment at the rainfall event scale showed a strong linear relationship with mean throughfall amount in both forest plots. The % of locations with SWC increments increased in a similar way to throughfall amount in both forest plots. The analyses considering all the effects together indicated again that throughfall had a significant positive effect in both forest plots, while soil litter depth showed a significant negative effect for the oak plot but lower statistical significance for the pine plot, showing a comparable -although more erratic- influence of the organic forest floor for this plot. These results, together with lower responses of SWC to throughfall than expected in rainfall events characterized by low preceding soil water-condition and high rainfall intensity, suggest that litter layer is playing an important role in controlling the soil water-content dynamics. The biometric characteristics of the nearest trees showed significant but very weak relationships with soil water-content increment, suggesting that stemflow and throughfall may act at lower distances from tree trunk than those presented in our study.

3.
Sci Total Environ ; 565: 1001-1010, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27251770

ABSTRACT

Hydrological data for assessing the regime of temporary rivers are often non-existent or scarce. The scarcity of flow data makes impossible to characterize the hydrological regime of temporary streams and, in consequence, to select the correct periods and methods to determine their ecological status. This is why the TREHS software is being developed, in the framework of the LIFE Trivers project. It will help managers to implement adequately the European Water Framework Directive in this kind of water body. TREHS, using the methodology described in Gallart et al. (2012), defines six transient 'aquatic states', based on hydrological conditions representing different mesohabitats, for a given reach at a particular moment. Because of its qualitative nature, this approach allows using alternative methodologies to assess the regime of temporary rivers when there are no observed flow data. These methods, based on interviews and high-resolution aerial photographs, were tested for estimating the aquatic regime of temporary rivers. All the gauging stations (13) belonging to the Catalan Internal Catchments (NE Spain) with recurrent zero-flow periods were selected to validate this methodology. On the one hand, non-structured interviews were conducted with inhabitants of villages near the gauging stations. On the other hand, the historical series of available orthophotographs were examined. Flow records measured at the gauging stations were used to validate the alternative methods. Flow permanence in the reaches was estimated reasonably by the interviews and adequately by aerial photographs, when compared with the values estimated using daily flows. The degree of seasonality was assessed only roughly by the interviews. The recurrence of disconnected pools was not detected by flow records but was estimated with some divergences by the two methods. The combination of the two alternative methods allows substituting or complementing flow records, to be updated in the future through monitoring by professionals and citizens.

SELECTION OF CITATIONS
SEARCH DETAIL
...