Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 119(40): e2121248119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161958

ABSTRACT

The slender wild oat (Avena barbata) was widely studied in California using allozymes in the 1970s and interpreted as a case of ecotypic adaptation to contrasting moisture environments. However, common garden studies suggested that the moist-associated ("mesic") ecotype had high fitness in both moist and dry habitats, thus predicting an adaptive spread into areas occupied by the dry associated ("xeric") ecotype. To test this prediction, we revisited 100 populations of A. barbata that were screened genetically 40 y ago. As expected, mesic allozyme and morphological markers are much more common than in the 1970s. The less-fit xeric ecotype, while still widespread, has declined markedly in range and frequency. Genotyping by sequencing of modern populations reveals striking genetic uniformity within each of the two ecotypes. In recombinants between the two ecotypes, the mesic allele at a major fitness quantitative trait locus (QTL) shows a high frequency but so do many other genomic regions not identified as fitness QTL. Additional introduced genotypes are diverse and more widespread than in the past, and our results show that these have spread into the former range of the xeric ecotype to an even greater extent than the mesic ecotype has. While these results confirm the prediction of contemporary evolution from common gardens, they also suggest that much of the change has been driven by additional waves of introduced genotypes.


Subject(s)
Avena , Ecotype , Isoenzymes , Adaptation, Physiological/genetics , Alleles , Avena/genetics , California , Genetic Drift , Genetic Fitness , Genotype , Isoenzymes/genetics , Quantitative Trait Loci
2.
Sci Rep ; 9(1): 12298, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31444367

ABSTRACT

The genus Avena (oats) contains diploid, tetraploid and hexaploid species that evolved through hybridization and polyploidization. Four genome types (named A through D) are generally recognized. We used GBS markers to construct linkage maps of A genome diploid (Avena strigosa x A. wiestii, 2n = 14), and AB genome tetraploid (A. barbata 2n = 28) oats. These maps greatly improve coverage from older marker systems. Seven linkage groups in the tetraploid showed much stronger homology and synteny with the A genome diploids than did the other seven, implying an allopolyploid hybrid origin of A. barbata from distinct A and B genome diploid ancestors. Inferred homeologies within A. barbata revealed that the A and B genomes are differentiated by several translocations between chromosomes within each subgenome. However, no translocation exchanges were observed between A and B genomes. Comparison to a consensus map of ACD hexaploid A. sativa (2n = 42) revealed that the A and D genomes of A. sativa show parallel rearrangements when compared to the A genomes of the diploids and tetraploids. While intergenomic translocations are well known in polyploid Avena, our results are most parsimoniously explained if translocations also occurred in the A, B and D genome diploid ancestors of polyploid Avena.


Subject(s)
Avena/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Diploidy , Gene Rearrangement/genetics , Phylogeny , Polyploidy , Tetraploidy , Genome, Plant
3.
Oecologia ; 189(3): 711-718, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30758657

ABSTRACT

Grasses are major agricultural products worldwide and they are critical to ecosystem function in many terrestrial habitats. Despite their global importance, we know relatively little about their defenses against herbivory. Grasses tend to be tolerant of leaf loss because their valuable meristems are located underground, out of reach for above ground herbivores. Many grasses have unidirectional leaf hairs, prickles, and spines that make moving up the leaf blade easy, but make moving down, toward the meristem, difficult. We tested the hypothesis that unidirectional grass hairs direct small arthropod herbivores away from the meristems. In a field survey of the distribution of herbivore damage, we found that leaf tips received five times more damage than leaf bases for Avena barbata. Early-instar grasshoppers fed three times as often on leaf tops as on leaf bases of pubescent individuals in a common garden laboratory experiment. This effect was not observed for glabrous individuals where grasshoppers damaged leaf bases as often as leaf tops. A common generalist caterpillar, Heliothus virescens, was more than twice as likely to turn in the direction of the hairs, away from the meristems, when it encountered pubescent leaves of A. barbata. However, larger caterpillars of the generalist feeder Arctia virginalis showed no directional bias when they encountered pubescent leaves. In common garden experiments, selection on pubescence was weak and inconsistent over space and time. Under some circumstances, individuals of A. barbata with pubescent leaves were more likely to produce seeds than were individuals with fewer hairs. The surveys, behavioral experiments with small insects, and estimates of lifetime reproduction all support the hypothesis that unidirectional leaf hairs on A. barbata, and perhaps other grasses, serve as an unstudied defense that direct small herbivores away from the meristems.


Subject(s)
Meristem , Poaceae , Animals , Ecosystem , Hair , Herbivory , Plant Leaves
4.
J Neurotrauma ; 34(S1): S26-S43, 2017 09.
Article in English | MEDLINE | ID: mdl-28937953

ABSTRACT

The United States Department of Defense Blast Injury Research Program Coordinating Office organized the 2015 International State-of-the-Science meeting to explore links between blast-related head injury and the development of chronic traumatic encephalopathy (CTE). Before the meeting, the planning committee examined articles published between 2005 and October 2015 and prepared this literature review, which summarized broadly CTE research and addressed questions about the pathophysiological basis of CTE and its relationship to blast- and nonblast-related head injury. It served to inform participants objectively and help focus meeting discussion on identifying knowledge gaps and priority research areas. CTE is described generally as a progressive neurodegenerative disorder affecting persons exposed to head injury. Affected individuals have been participants primarily in contact sports and military personnel, some of whom were exposed to blast. The symptomatology of CTE overlaps with Alzheimer's disease and includes neurological and cognitive deficits, psychiatric and behavioral problems, and dementia. There are no validated diagnostic criteria, and neuropathological evidence of CTE has come exclusively from autopsy examination of subjects with histories of exposure to head injury. The perivascular accumulation of hyperphosphorylated tau (p-tau) at the depths of cortical sulci is thought to be unique to CTE and has been proposed as a diagnostic requirement, although the contribution of p-tau and other reported pathologies to the development of clinical symptoms of CTE are unknown. The literature on CTE is limited and is focused predominantly on head injuries unrelated to blast exposure (e.g., football players and boxers). In addition, comparative analyses of clinical case reports has been challenging because of small case numbers, selection biases, methodological differences, and lack of matched controls, particularly for blast-exposed individuals. Consequently, the existing literature is not sufficient to determine whether the development of CTE is associated with head injury frequency (e.g., single vs. multiple exposures) or head injury type (e.g., impact, nonimpact, blast-related). Moreover, the incidence and prevalence of CTE in at-risk populations is unknown. Future research priorities should include identifying additional risk factors, pursuing population-based longitudinal studies, and developing the ability to detect and diagnose CTE in living persons using validated criteria.


Subject(s)
Blast Injuries/complications , Chronic Traumatic Encephalopathy/etiology , Humans
5.
Theor Appl Genet ; 129(11): 2133-2149, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27522358

ABSTRACT

KEY MESSAGE: Genome analysis of 27 oat species identifies ancestral groups, delineates the D genome, and identifies ancestral origin of 21 mapped chromosomes in hexaploid oat. We investigated genomic relationships among 27 species of the genus Avena using high-density genetic markers revealed by genotyping-by-sequencing (GBS). Two methods of GBS analysis were used: one based on tag-level haplotypes that were previously mapped in cultivated hexaploid oat (A. sativa), and one intended to sample and enumerate tag-level haplotypes originating from all species under investigation. Qualitatively, both methods gave similar predictions regarding the clustering of species and shared ancestral genomes. Furthermore, results were consistent with previous phylogenies of the genus obtained with conventional approaches, supporting the robustness of whole genome GBS analysis. Evidence is presented to justify the final and definitive classification of the tetraploids A. insularis, A. maroccana (=A. magna), and A. murphyi as containing D-plus-C genomes, and not A-plus-C genomes, as is most often specified in past literature. Through electronic painting of the 21 chromosome representations in the hexaploid oat consensus map, we show how the relative frequency of matches between mapped hexaploid-derived haplotypes and AC (DC)-genome tetraploids vs. A- and C-genome diploids can accurately reveal the genome origin of all hexaploid chromosomes, including the approximate positions of inter-genome translocations. Evidence is provided that supports the continued classification of a diverged B genome in AB tetraploids, and it is confirmed that no extant A-genome diploids, including A. canariensis, are similar enough to the D genome of tetraploid and hexaploid oat to warrant consideration as a D-genome diploid.


Subject(s)
Avena/genetics , Chromosomes, Plant/genetics , Genome, Plant , Chromosome Painting , DNA, Plant/genetics , Genetic Markers , Genotyping Techniques , Haplotypes , Polyploidy
6.
Genome ; 59(3): 209-20, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26881940

ABSTRACT

Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB < AC < CC (average 2C = 16.76, 18.60, and 21.78 pg, respectively). All accessions from three hexaploid species with the ACD genome configuration had similar genome sizes (average 2C = 25.74 pg). Genome size was mostly consistent within species and in general agreement with current information about evolutionary distance among species. Results also suggest that most of the polyploid species in Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology.


Subject(s)
Avena/genetics , Genome Size , Genome, Plant , Avena/classification , Biological Evolution , DNA, Plant/genetics , Diploidy , Flow Cytometry , Models, Genetic , Polyploidy , Tetraploidy
7.
PeerJ ; 2: e633, 2014.
Article in English | MEDLINE | ID: mdl-25392753

ABSTRACT

Multiple introductions are thought to enhance the chance of successful colonization, in part because recombination may generate adaptive variation to a new environment. Avena barbata (slender wild oat) is a successful colonist in California, historically noted for striking genetic divergence into two multilocus genotypes, but is still undergoing adaptive change. We sought to understand whether multiple introductions might be contributing to this change. We used cpDNA phylogeography of A. barbata within its home range and in its invaded range in California to determine the minimum number of separate introductions, and the spatial distribution of these introduced lineages. We collected from sites throughout the state of California, where it is an invasive species. Accessions from a representative portion of A. barbata's full native range were obtained from germplasm repositories. We sequenced seven intergenic chloroplast DNA loci for A. barbata individuals both in California (novel geographic range) and its ancestral range. 204 individuals were assayed for chloroplast haplotype within California using single strand conformational polymorphism SSCPs. Genome size was determined by flow cytometry. Californian accessions are tetraploid as expected, but their genome sizes were smaller than the Old World accessions. There were three haplotypes present in California that were identical to haplotypes in the native range. Within California, the presence of multiple haplotypes at a site was observed primarily in Northern and Central populations. Between populations there was still substantial structure with F ST ∼ 0.33, due to a shallow latitudinal cline caused by a preponderance of xeric haplotypes in Southern California. There was a minimum of three seed introductions to California. Recombination is thus likely to occur, and contribute to adaptation in new range in this highly-selfing, invader.

8.
Genetics ; 185(1): 375-85, 2010 May.
Article in English | MEDLINE | ID: mdl-20194964

ABSTRACT

The genetic architecture of variation in evolutionary fitness determines the trajectory of adaptive change. We identified quantitative trait loci (QTL) affecting fitness in a mapping population of recombinant inbred lines (RILs) derived from a cross between moist- and dry- associated ecotypes of Avena barbata. We estimated fitness in 179 RILs in each of two natural environments in each of 4 years. Two loci account for over half of the variation in geometric mean fitness across environments. These loci are associated in repulsion phase in the wild ecotypes, suggesting the potential for strong transgressive segregation, but also show significant epistasis giving hybrid breakdown. This epistasis is the result of sharply lower fitness in only one of the recombinant genotypes, suggesting that the loci may contain synergistically acting mutations. Within each trial (year/site combination), we can explain less of the variation than for geometric mean fitness, but the two major loci are associated with variation in fitness in most environments. Tests for pleiotropic effects of QTL on fitness in different environments reveal that the same loci are under selection in all trials. Genotype-by-environment interactions are significant for some loci, but this reflects variation in the strength, not the direction of selection.


Subject(s)
Chromosome Mapping , Environment , Epistasis, Genetic , Poaceae/genetics , Quantitative Trait Loci/genetics , Selection, Genetic , Alleles , Bayes Theorem , Genetic Fitness , Genetic Linkage , Genotype , Likelihood Functions , Models, Genetic
9.
Am Nat ; 175(2): 211-24, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20039799

ABSTRACT

Costs are hypothesized to constrain the evolution of adaptive phenotypic plasticity, but they have been difficult to quantify because strong selection should eliminate costly genotypes from natural populations. However, recent studies suggest that crosses between natural populations can recover these genotypes. We determined the adaptive value and costs of, as well as the genetic variation for, physiological and morphological plasticity to soil water limitation in Avena barbata recombinant inbred lines (RILs) created by crossing mesic and xeric ecotypes. All traits were plastic, and plasticity in stomatal limitation of photosynthesis and photosynthetic rate before and at reproduction was adaptive. However, we detected a significant cost of plasticity only for stomatal conductance at reproduction, and the mean cost for all traits of A. barbata RILs was at least 50% smaller than costs previously estimated using RILs. In addition, heritabilities for plasticity were <0.1 and were significant only for photosynthesis at reproduction and leaf mass per unit area. Our results suggest that costs are less likely to constrain the evolution of adaptive plasticity in A. barbata than genetic variation for plasticity.


Subject(s)
Inbreeding , Poaceae/genetics , Poaceae/physiology , Soil/analysis , Water/chemistry , Adaptation, Physiological , Ecosystem , Photosynthesis , Reproduction/physiology
10.
Mol Ecol ; 18(18): 3781-91, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19674308

ABSTRACT

Forty years ago, Robert Allard and colleagues documented that the slender wild oat, Avena barbata, occurred in California as two multi-locus allozyme genotypes, associated with mesic and xeric habitats. This is arguably the first example of ecotypes identified by molecular techniques. Despite widespread citation, however, the inference of local adaptation of these ecotypes rested primarily on the allozyme pattern. This study tests for local adaptation of these ecotypes using reciprocal transplant and quantitative trait locus (QTL) mapping techniques. Both ecotypes and 188 recombinant inbred lines (RILs) derived from a cross between them were grown in common garden plots established at two sites representative of the environments in which the ecotypes were first described. Across four growing seasons at each site, three observations consistently emerged. First, despite significant genotype by environment interaction, the mesic ecotype consistently showed higher lifetime reproductive success across all years and sites. Second, the RILs showed no evidence of a trade-off in performance across sites or years, and fitness was positively correlated across environments. Third, at QTL affecting lifetime reproductive success, selection favoured the same allele in all environments. None of these observations are consistent with local adaptation but suggest that a single genotype is selectively favoured at both moist and dry sites. I propose an alternative hypothesis that A. barbata may be an example of contemporary evolution--whereby the favoured genotype is spreading and increasing in frequency--rather than local adaptation.


Subject(s)
Adaptation, Physiological/genetics , Evolution, Molecular , Poaceae/genetics , Quantitative Trait Loci , Climate , Environment , Genetics, Population , Genotype , Inbreeding , Poaceae/growth & development , Selection, Genetic
11.
Evolution ; 63(8): 2153-63, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19473384

ABSTRACT

We applied QTL mapping to fitness variation of Avena barbata under well-watered greenhouse conditions. One hundred eighty recombinant inbred lines were assayed for flowering time, total size, mass allocation, and fitness. Composite Interval Mapping identified two to five loci affecting these traits. These were well supported in more powerful Multiple and Bayesian interval mapping analyses that indicated that additional QTL, as well as epistatic interactions also affect the traits. The posterior distribution of the number of QTL peaked at five to eight additive loci and one to two interactions, but the specific locations of the additional loci could not be determined with certainty. In most cases in which loci for separate traits mapped to similar locations, explicit tests supported pleiotropy over close linkage of separate loci. Alleles that hastened first flowering generally reduced vegetative mass, increased reproductive mass, and were associated with high fitness. Because effects on mass allocation generally cancelled one another, few loci affected total plant size. Only one QTL affected vegetative mass independent of reproductive mass and this locus had little effect on fitness. Thus selection acts to shift the mass allocation toward greater reproductive allocation, because the correlated decrease in vegetative mass poses only a minor fitness cost.


Subject(s)
Evolution, Molecular , Poaceae/genetics , Quantitative Trait Loci , Selection, Genetic , Animals , Chromosome Mapping , Epistasis, Genetic , Poaceae/growth & development
12.
Evolution ; 63(3): 702-15, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19054049

ABSTRACT

Environmental stress can alter genetic variation and covariation underlying functional traits, and thus affect adaptive evolution in response to natural selection. However, the genetic basis of functional traits is rarely examined in contrasting resource environments, and consequently, there is no consensus regarding whether environmental stress constrains or facilitates adaptive evolution. We tested whether resource availability affects genetic variation for and covariation among seven physiological traits and seven morphological/performance traits by growing the annual grass Avena barbata in dry and well-watered treatments. We found that differences in the overall genetic variance-covariance (G) matrix between environments were driven by physiological traits rather than morphology and performance traits. More physiological traits were heritable in the dry treatment than the well-watered treatment and many of the genetic correlations among physiological traits were environment dependent. In contrast, genetic variation and covariation among the morphological and performance traits did not differ across treatments. Furthermore, genetic correlations between physiology and performance were stronger in the dry treatment, which contributed to differences in the overall G-matrix. Our results therefore suggest that physiological adaptation would be constrained by low heritable variation in resource-rich environments, but facilitated by higher heritable variation and stronger genetic correlations with performance traits in resource-poor environments.


Subject(s)
Poaceae/genetics , Biological Evolution , Droughts , Genetic Variation , Poaceae/physiology , Selection, Genetic
13.
New Phytol ; 180(1): 240-247, 2008.
Article in English | MEDLINE | ID: mdl-18637067

ABSTRACT

Comparative studies suggest that a positive correlation between xylem water transport and photosynthesis is adaptive. A requirement for the adaptive evolution of coordination between xylem and photosynthetic functions is the presence of genetic variation and covariation for these traits within populations. Here it was determined whether there was genetic variation and covariation for leaf blade hydraulic conductivity (K(W)), photosynthetic rate (A), stomatal conductance (g(s)), and time to flowering in a population of recombinant inbred lines of Avena barbata, a Mediterranean annual grass. Significant (P < 0.05) broad-sense heritabilities (H(2)) were detected for K(W) (H(2) = 0.33), A (H(2) = 0.23) and flowering time (H(2) = 0.62), but not for g(s). Significant positive genetic covariation between A and K(W) was also observed. There was no other genetic covariation among traits. The first evidence of genetic variation for K(W) within a species was obtained. These results also indicate that there is a genetic basis for the positive association between xylem water transport and photosynthesis. The presence of significant genetic variation and covariation for these traits in natural populations would facilitate correlated evolution between xylem and leaf functions.


Subject(s)
Genetic Variation , Photosynthesis/genetics , Poaceae/genetics , Water/metabolism , Biological Transport , Biomass , Biomechanical Phenomena , Phenotype , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Stomata/physiology , Poaceae/growth & development , Poaceae/metabolism , Xylem/genetics , Xylem/metabolism
14.
Evolution ; 62(3): 573-85, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18182076

ABSTRACT

We examined genotype (G) by environment (E) interactions for fitness in mesic and xeric ecotypes of the self-fertilizing annual grass, Avena barbata and their recombinant inbred hybrid progeny. Fitness was assayed (1) in experimental water and nutrient treatments in the greenhouse and (2) in common gardens in each ecotype's native habitat. G x E interactions were significant in the greenhouse. Nevertheless, the same recombinant genotypes tended to have high fitness across all water and nutrient treatments. G x E interactions were less pronounced in the field, and were driven by the contrast between the uniformly low survivorship at the mesic site in 2004 and genetic variation in fitness at the other years/site combinations. Moreover, the mesic ecotype consistently outperformed the xeric in both field and greenhouse. Several of the recombinant genotypes outperformed the parents in the novel greenhouse treatments, but these genotypes did not outperform the mesic parent in field trials. Indeed, it is only in the comparison between field and greenhouse environments that there was a noticeable change in the identity of the most-fit genotype. The results provide evidence that hybridization can create genotypes that are better adapted to newer environments such as those imposed in our greenhouse experiments.


Subject(s)
Adaptation, Biological/physiology , Environment , Hybridization, Genetic , Poaceae/genetics , Analysis of Variance , Crosses, Genetic , Genotype , Models, Biological , Poaceae/growth & development
15.
Evol Appl ; 1(1): 84-94, 2008 Feb.
Article in English | MEDLINE | ID: mdl-25567493

ABSTRACT

Conservation genetics can be seen as the effort to influence the evolutionary process in ways that enhance the persistence of populations. Much published research in the field applies genetic sampling techniques to infer population parameters from the patterns of variation in threatened populations. The limited resolution of these inferences seems to yield limited confidence which results in conservative policy recommendations. As an alternative, I suggest that conservation genetics focus on the relationships between those variables conservationists can control, and the probability of desirable evolutionary outcomes. This research would involve three phases - a greater use of existing evolutionary theory; testing management options using experimental evolution; and 'field trials' under an adaptive management framework. It would take a probabilistic approach that recognizes the stochasticity inherent in evolutionary change. This would allow a more nuanced approach to conservation policy than rule of thumb guidelines. Moreover, it would capitalize on the fact that evolution is a unifying theory in biology and draw on the substantial body of evolutionary knowledge that has been built up over the last half a century.

16.
Mol Ecol ; 16(20): 4195-209, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17850272

ABSTRACT

We review genetic correlations among quantitative traits in light of their underlying quantitative trait loci (QTL). We derive an expectation of genetic correlation from the effects of underlying loci and test whether published genetic correlations can be explained by the QTL underlying the traits. While genetically correlated traits shared more QTL (33%) on average than uncorrelated traits (11%), the actual number of shared QTL shared was small. QTL usually predicted the sign of the correlation with good accuracy, but the quantitative prediction was poor. Approximately 25% of trait pairs in the data set had at least one QTL with antagonistic effects. Yet a significant minority (20%) of such trait pairs have net positive genetic correlations due to such antagonistic QTL 'hidden' within positive genetic correlations. We review the evidence on whether shared QTL represent single pleiotropic loci or closely linked monotropic genes, and argue that strict pleiotropy can be viewed as one end of a continuum of recombination rates where r=0. QTL studies of genetic correlation will likely be insufficient to predict evolutionary trajectories over long time spans in large panmictic populations, but will provide important insights into the trade-offs involved in population and species divergence.


Subject(s)
Plants/genetics , Quantitative Trait Loci/genetics , Genetic Speciation , Genetic Variation , Linkage Disequilibrium/genetics , Models, Genetic , Plants/classification
17.
Genetica ; 129(2): 167-77, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17006737

ABSTRACT

We created Recombinant Inbred Lines (RILs) derived from a cross between ecotypes of Avena barbata associated with moist (mesic) and dry (xeric) habitats in California. Traits which were correlated with fitness across RILs mapped to the same Quantitative Trait Loci (QTLs) as fitness. However, different QTL affected fitness in different environments so that fitness was weakly correlated across environments. Recombination released considerable heritable variation both in fitness, and in ecologically relevant traits. Many traits showed transgressive segregation caused by recombination of QTL associated in repulsion phase in the parents. In addition, some traits were uncorrelated, allowing novel combinations of those traits to be created. Recombination also created heritable variation in reaction norms for at least one trait (root allocation). Altogether these results suggest that recombination can combine the most selectively advantageous genes and traits of the parents to produce broadly adapted genotypes that are capable of outperforming the parents. Indeed, two of the RILs showed higher fitness than the parental ecotypes across a range of environmental treatments in the greenhouse, but their superiority was less pronounced in the field. Although late-generation recombinants exhibited hybrid breakdown, being less fit, on average, than the mid-parent, early generation hybrids appear to exhibit hybrid vigour through the expression of dominance effects in the heterozyotes. This vigour may offset the effects of hybrid breakdown in the early generations following a cross, enhancing the opportunity for recombination to create broadly adapted genotypes. We discuss the implications of these findings to the evolution of colonizing species.


Subject(s)
Poaceae/genetics , Acclimatization/genetics , Biological Evolution , California , Climate , Ecosystem , Environment , Genes, Plant , Genetic Variation , Genotype , Hybrid Vigor , Hybridization, Genetic , Quantitative Trait Loci , Recombination, Genetic , Selection, Genetic
18.
Mol Ecol ; 15(5): 1321-33, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16626456

ABSTRACT

We constructed recombinant inbred lines of a cross between naturally occurring ecotypes of Avena barbata (Pott ex Link), Poaceae, associated with contrasting moisture environments. These lines were assessed for fitness in common garden reciprocal transplant experiments in two contrasting field sites in each of two years, as well as a novel, benign greenhouse environment. An AFLP (amplified fragment length polymorphism) linkage map of 129 markers spanned 644 cM in 19 linkage groups, which is smaller, with more linkage groups, than expected. Therefore parts of the A. barbata genome remain unmapped, possibly because they lack variation between the ecotypes. Nevertheless, we identified QTL (quantitative trait loci) under selection in both native environments and in the greenhouse. Across years at the same site, the same loci remain under selection, for the same alleles. Across sites, an overlapping set of loci are under selection with either (i) the same alleles favoured at both sites or (ii) loci under selection at one site and neutral at the other. QTL under selection in the greenhouse were generally unlinked to those under selection in the field because selection acted on a different trait. We found little evidence that selection favours alternate alleles in alternate environments, which would be necessary if genotype by environment interaction were to maintain genetic variation in A. barbata. Additive effect QTL were best able to explain the genetic variation among recombinant inbred lines for the greenhouse environment where heritability was highest, and past selection had not eliminated variation.


Subject(s)
Chromosomes, Plant/genetics , Poaceae/genetics , Quantitative Trait Loci , Selection, Genetic , Chromosome Mapping , Environment , Evolution, Molecular , Genetic Markers , Poaceae/growth & development , Pollen/physiology , Polymorphism, Genetic
19.
Philos Trans R Soc Lond B Biol Sci ; 359(1442): 197-207, 2004 Feb 29.
Article in English | MEDLINE | ID: mdl-15101576

ABSTRACT

Data on the genetic structure of tree and shrub populations on the continental scale have accumulated dramatically over the past decade. However, our ability to make inferences on the impact of the last ice age still depends crucially on the availability of informative palaeoecological data. This is well illustrated by the results from a recent project, during which new pollen fossil maps were established and the variation in chloroplast DNA was studied in 22 European species of trees and shrubs. Species exhibit very different levels of genetic variation between and within populations, and obviously went through very different histories after Ice Ages. However, when palaeoecological data are non-informative, inferences on past history are difficult to draw from entirely genetic data. On the other hand, as illustrated by a study in ponderosa pine, when we can infer the species' history with some certainty, coalescent simulations can be used and new hypotheses can be tested.


Subject(s)
Climate , Environment , Genetic Variation , Plants/genetics , Trees , DNA, Chloroplast/genetics , Geography
20.
Evolution ; 53(3): 769-776, 1999 Jun.
Article in English | MEDLINE | ID: mdl-28565634

ABSTRACT

I examined the effects of historical division and secondary contact between eastern and western varieties of ponderosa pine (Pinus ponderosa Laws Pinaceae) on extant patterns of genetic variation. Fossil and biogeographic evidence both indicate that the current point of contact between these two varieties represents secondary contact following historical separation during the Wisconsin glaciation. Current gene flow was assessed by observing the degree of introgression of paternally inherited cpDNA and maternally inherited mtDNA polymorphisms. Both seeds and pollen are wind dispersed in ponderosa pine. Introgression was primarily from west to east, the direction of the prevailing wind, for both organelles, but introgression of cpDNA far exceeded that of mtDNA. Thus pollen is the main agent of contemporary gene flow between the two varieties. Neither seeds nor pollen showed enough introgression since secondary contact to have homogenized the two gene pools. However, allozyme differentiation was minimal. This calls into question assumptions of selective neutrality for at least some of the markers. Theory predicts that nuclear markers will show a high locus-to-locus variance of FST following historical separation. This prediction is confirmed by the allozyme data for ponderosa pine, and may provide a useful means of identifying historical separations from allele frequency data.

SELECTION OF CITATIONS
SEARCH DETAIL
...