Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 4(19)2016 10.
Article in English | MEDLINE | ID: mdl-27694527

ABSTRACT

The perinatal period remains a time of significant risk of death or disability. Increasing evidence suggests that this depends on microcirculatory behavior. Sidestream dark-field orthogonal polarized light videomicroscopy (OPS) has emerged as a useful assessment of adult microcirculation but the values derived are not delineated for the newborn. We aimed to define these parameters in well term newborn infants. Demographic details were collected prospectively on 42 healthy term neonates (n = 20 females, n = 22 males). OPS videomicroscopy (Microscan) was used to view ear conch skin microcirculation at 6, 24, and 72 h of age. Stored video was analyzed by a masked observer using proprietary software. There were no significant differences between the sexes for any structural parameters at any time point. There was a significant increase over time in small vessel perfusion in female infants only (P = 0.009). A number of 6- and 72-h measurements were significantly correlated, but differed from the 24-h values. These observations confirm the utility of the ear conch for neonatal microvascular videomicroscopy. They provide a baseline for studies into the use of OPS videomicroscopy in infants. The changes observed are comparable with previous studies of term infants using these and other microvascular techniques. It is recommended that studies for examining the mature neonatal microvascular structure be delayed until 72 h of life, but studies of the physiology of cardiovascular transition should include the 24-h time point after delivery.


Subject(s)
Capillaries/diagnostic imaging , Ear Cartilage/blood supply , Microcirculation/physiology , Microscopy, Video/methods , Skin/blood supply , Birth Weight , Blood Flow Velocity/physiology , Cardiovascular Physiological Phenomena , Ear Cartilage/diagnostic imaging , Female , Gestational Age , Humans , Infant, Newborn , Male , Pregnancy , Prospective Studies , Regional Blood Flow , Skin/diagnostic imaging
2.
Pediatr Res ; 80(6): 793-799, 2016 12.
Article in English | MEDLINE | ID: mdl-27497044

ABSTRACT

BACKGROUND: Microvascular dysregulation following preterm birth is associated with increased illness severity and hypotension, particularly in males. Sympathetic nervous vascular regulation is evident in females. We hypothesized that sympathetic dysfunction in male preterm infants may contribute to a failure of peripheral microvascular vasoconstriction. METHODS: Microvascular blood flow of infants 24-43 wk gestational age was assessed at 6, 24, and 72 h of age by laser Doppler. Blood flow Fourier transformed frequency distribution spectra (low frequency/high frequency ratio) were used to assess the influence of sympathetic tone on microvascular regulation. Total sympathetic output was assessed as urinary normetanephrine. RESULTS: Microvascular sympathetic activity at 24 h postnatal age decreased in early preterm males, but not females. Peripheral sympathetic activity increased with advancing postnatal age in females, but decreased in males. In early preterm infants, total normetanephrine outputs increase significantly with postnatal age, in both sexes. CONCLUSION: Sympathetic activation following preterm birth is sexually dimorphic, with preterm males having reduced sympathetic tone and reduced upregulation of sympathetic tone following birth. There is evidence of a disconnect between central sympathetic activity and local peripheral microcirculatory sympathetic drive. This may relate to autonomic nervous immaturity and highlights the need to understand how preterm birth may affect autonomic function.


Subject(s)
Infant, Premature/physiology , Microcirculation/physiology , Sympathetic Nervous System/physiology , Female , Humans , Infant, Extremely Premature/physiology , Infant, Newborn , Laser-Doppler Flowmetry , Male , Normetanephrine/urine , Sex Characteristics
3.
PLoS One ; 10(3): e0121621, 2015.
Article in English | MEDLINE | ID: mdl-25807236

ABSTRACT

BACKGROUND & AIMS: Hydrogen sulphide (H2S), nitric oxide (NO), and carbon monoxide (CO) are involved in transitional microvascular tone dysregulation in the preterm infant; however there is conflicting evidence on the interaction of these gasotransmitters, and their overall contribution to the microcirculation in newborns is not known. The aim of this study was to measure the levels of all 3 gasotransmitters, characterise their interrelationships and elucidate their combined effects on microvascular blood flow. METHODS: 90 preterm neonates were studied at 24h postnatal age. Microvascular studies were performed by laser Doppler. Arterial COHb levels (a measure of CO) were determined through co-oximetry. NO was measured as nitrate and nitrite in urine. H2S was measured as thiosulphate by liquid chromatography. Relationships between levels of the gasotransmitters and microvascular blood flow were assessed through partial correlation controlling for the influence of gestational age. Structural equation modelling was used to examine the combination of these effects on microvascular blood flow and derive a theoretical model of their interactions. RESULTS: No relationship was observed between NO and CO (p = 0.18, r = 0.18). A positive relationship between NO and H2S (p = 0.008, r = 0.28) and an inverse relationship between CO and H2S (p = 0.01, r = -0.33) exists. Structural equation modelling was used to examine the combination of these effects on microvascular blood flow. The model with the best fit is presented. CONCLUSIONS: The relationships between NO and H2S, and CO and H2S may be of importance in the preterm newborn, particularly as NO levels in males are associated with higher H2S levels and higher microvascular blood flow and CO in females appears to convey protection against vascular dysregulation. Here we present a theoretical model of these interactions and their overall effects on microvascular flow in the preterm newborn, upon which future mechanistic studies may be based.


Subject(s)
Gasotransmitters/metabolism , Infant, Premature/metabolism , Infant, Premature/physiology , Microcirculation/physiology , Carbon Monoxide/metabolism , Female , Gestational Age , Humans , Hydrogen Sulfide/metabolism , Infant, Newborn , Male , Nitric Oxide/metabolism
4.
Physiol Rep ; 2(9)2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25350751

ABSTRACT

Dysfunction of the transition from fetal to neonatal circulatory systems may be a major contributor to poor outcome following preterm birth. Evidence exists in the human for both a period of low flow between 5 and 11 h and a later period of increased flow, suggesting a hypoperfusion-reperfusion cycle over the first 24 h following birth. Little is known about the regulation of peripheral blood flow during this time. The aim of this study was to conduct a comparative study between the human and guinea pig to characterize peripheral microvascular behavior during circulatory transition. Very preterm (≤28 weeks GA), preterm (29-36 weeks GA), and term (≥37 weeks GA) human neonates underwent laser Doppler analysis of skin microvascular blood flow at 6 and 24 h from birth. Guinea pig neonates were delivered prematurely (62 day GA) or at term (68-71 day GA) and laser Doppler analysis of skin microvascular blood flow was assessed every 2 h from birth. In human preterm neonates, there is a period of high microvascular flow at 24 h after birth. No period of low flow was observed at 6 h. In preterm animals, microvascular flow increased after birth, reaching a peak at 10 h postnatal age. Blood flow then steadily decreased, returning to delivery levels by 24 h. Preterm birth was associated with higher baseline microvascular flow throughout the study period in both human and guinea pig neonates. The findings do not support a hypoperfusion-reperfusion cycle in the microcirculation during circulatory transition. The guinea pig model of preterm birth will allow further investigation of the mechanisms underlying microvascular function and dysfunction during the initial extrauterine period.

5.
PLoS One ; 9(8): e105085, 2014.
Article in English | MEDLINE | ID: mdl-25121737

ABSTRACT

Excessive vasodilatation during the perinatal period is associated with cardiorespiratory instability in preterm neonates. Little evidence of the mechanisms controlling microvascular tone during circulatory transition exists. We hypothesised that hydrogen sulphide (H2S), an important regulator of microvascular reactivity and central cardiac function in adults and animal models, may contribute to the vasodilatation observed in preterm newborns. Term and preterm neonates (24-43 weeks gestational age) were studied. Peripheral microvascular blood flow was assessed by laser Doppler. Thiosulphate, a urinary metabolite of H2S, was determined by high performance liquid chromatography as a measure of 24 hr total body H2S turnover for the first 3 days of postnatal life. H2S turnover was greatest in very preterm infants and decreased with increasing gestational age (p = 0.0001). H2S turnover was stable across the first 72 hrs of life in older neonates. In very preterm neonates, H2S turnover increased significantly from day 1 to 3 (p =0.0001); and males had higher H2S turnover than females (p = 0.04). A significant relationship between microvascular blood flow and H2S turnover was observed on day 2 of postnatal life (p = 0.0004). H2S may play a role in maintaining microvascular tone in the perinatal period. Neonates at the greatest risk of microvascular dysfunction characterised by inappropriate peripheral vasodilatation--very preterm male neonates--are also the neonates with highest levels of total body H2S turnover suggesting that overproduction of this gasotransmitter may contribute to microvascular dysfunction in preterms. Potentially, H2S is a target to selectively control microvascular tone in the circulation of newborns.


Subject(s)
Hydrogen Sulfide/metabolism , Infant, Premature , Microcirculation/physiology , Chromatography, High Pressure Liquid , Humans , Infant, Newborn
6.
Am J Reprod Immunol ; 71(2): 165-77, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24206234

ABSTRACT

PROBLEM: Susceptibility to Chlamydia trachomatis infection is increased by oral contraceptives and modulated by sex hormones. We therefore sought to determine the effects of female sex hormones on the innate immune response to C. trachomatis infection. METHOD OF STUDY: ECC-1 endometrial cells, pre-treated with oestradiol or progesterone, were infected with C. trachomatis and the host transcriptome analysed by Illumina Sentrix HumanRef-8 microarray. Primary endocervical epithelial cells, prepared at either the proliferative or secretory phase of the menstrual cycle, were infected with C. trachomatis and cytokine gene expression determined by quantitative RT-PCR analysis. RESULTS: Chlamydia trachomatis yield from progesterone-primed ECC-1 cells was significantly reduced compared with oestradiol-treated cells. Genes upregulated in progesterone-treated and Chlamydia-infected cells only included multiple CC and CXC chemokines, IL-17C, IL-29, IL-32, TNF-α, DEFB4B, LCN2, S100A7-9, ITGAM, NOD2, JAK1, IL-6ST, type I and II interferon receptors, numerous interferon-stimulated genes and STAT6. CXCL10, CXCL11, CX3 CL1 and IL-17C, which were also upregulated in infected secretory-stage primary cells, and there was a trend towards higher levels of immune mediators in infected secretory-phase compared with proliferative-phase cells. CONCLUSION: Progesterone treatment primes multiple innate immune pathways in hormone-responsive epithelial cells that could potentially increase resistance to chlamydial infection.


Subject(s)
Chlamydia Infections/drug therapy , Chlamydia trachomatis/immunology , Endometrium/drug effects , Endothelial Cells/drug effects , Progesterone/pharmacology , Adult , Cell Line , Cervix Uteri/cytology , Chlamydia Infections/immunology , Cytokines/metabolism , Endometrium/physiology , Endothelial Cells/physiology , Estradiol/pharmacology , Female , Gene Expression Profiling , Humans , Immunity, Innate , Menstrual Cycle , Microarray Analysis , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...