Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Front Genet ; 15: 1345410, 2024.
Article in English | MEDLINE | ID: mdl-38633406

ABSTRACT

Background: Alcohol use disorder (AUD) is a complex condition associated with adverse health consequences that affect millions of individuals worldwide. Epigenetic modifications, including DNA methylation (5 mC), have been associated with AUD and other alcohol-related traits. Epigenome-wide association studies (EWAS) have identified differentially methylated genes associated with AUD in human peripheral and brain tissue. More recently, epigenetic studies of AUD have also evaluated DNA hydroxymethylation (5 hmC) in the human brain. However, most of the epigenetic work in postmortem brain tissue has examined bulk tissue. In this study, we investigated neuronal-specific 5 mC and 5 hmC alterations at CpG sites associated with AUD in the human orbitofrontal cortex (OFC). Methods: Neuronal nuclei from the OFC were evaluated in 34 human postmortem brain samples (10 AUD, 24 non-AUD). Reduced representation oxidative bisulfite sequencing was used to assess 5 mC and 5 hmC at the genome-wide level. Differential 5 mC and 5 hmC were evaluated using the methylKit R package and significance was set at false discovery rate < 0.05 and differential methylation > 2. Functional enrichment analyses were performed, and gene-level convergence was evaluated in an independent dataset that assessed 5 mC and 5 hmC of AUD in bulk cortical tissue. Results: We identified 417 5 mC and 363 5hmC significant differential CpG sites associated with AUD, with 59% in gene promoters. Some of the identified genes have been previously implicated in alcohol consumption, including SYK, DNMT3A for 5 mC, GAD1, DLX1, DLX2, for 5 hmC and GATA4 in both. Convergence with a previous AUD 5 mC and 5 hmC study was observed for 28 genes. We also identified 5 and 35 differential regions for 5 mC and 5 hmC, respectively. Lastly, GWAS enrichment analysis showed an association with AUD for differential 5 mC genes. Discussion: This study reveals neuronal-specific methylome and hydroxymethylome dysregulation associated with AUD, identifying both previously reported and potentially novel gene associations with AUD. Our findings provide new insights into the epigenomic dysregulation of AUD in the human brain.

2.
Hum Mutat ; 43(4): 449-460, 2022 04.
Article in English | MEDLINE | ID: mdl-35143088

ABSTRACT

The growing use of next-generation sequencing technologies on genetic diagnosis has produced an exponential increase in the number of variants of uncertain significance (VUS). In this manuscript, we compare three machine learning methods to classify VUS as Pathogenic or No pathogenic, implementing a Random Forest (RF), a Support Vector Machine (SVM), and a Multilayer Perceptron. To train the models, we extracted high-quality variants from ClinVar that were previously classified as VUS. For each variant, we retrieved nine conservation scores, the loss-of-function tool, and allele frequencies. For the RF and SVM models, hyperparameters were tuned using cross-validation with a grid search. The three models were tested on a nonoverlapping set of variants that had been classified as VUS over the last 3 years, but had been reclassified in August 2020. The three models yielded superior accuracy on this set compared to the benchmarked tools. The RF-based model yielded the best performance across different variant types and was used to create VusPrize, an open-source software tool for prioritization of VUS. We believe that our model can improve the process of genetic diagnosis in research and clinical settings.


Subject(s)
High-Throughput Nucleotide Sequencing , Machine Learning , High-Throughput Nucleotide Sequencing/methods , Humans , Neural Networks, Computer , Software , Support Vector Machine
5.
Pediatría (Bogotá) ; 31(3): 118-20, sept. 1996.
Article in Spanish | LILACS | ID: lil-237727

Subject(s)
Humans , Male , Female , Sex Chromosomes
SELECTION OF CITATIONS
SEARCH DETAIL
...