Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 24(17): 10488-10498, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35441617

ABSTRACT

Cr2O3 is not only a promising functional material, but also an essential barrier to protect chromia-forming alloys against high temperature corrosion. The Cr2O3 protecting layer grows slowly via defect-mediated diffusion. Several types of point defects could be responsible for the diffusion process depending on the oxidation environment, resulting in different semiconductor characters of chromia. According to the literature, the defect chemistry of Cr2O3 in the antiferromagnetic (AFM) state has been well studied using density functional theory (DFT) calculations but not in the paramagnetic (PM) state, which is the fundamental state of Cr2O3 above 318 K. PM Cr2O3 is simulated in this study using special quasi-random structures (SQS). The formation energies of intrinsic point defects in AFM and PM Cr2O3 are calculated to study the defect chemistry and the semiconductor properties in different oxidation environments (temperature and oxygen partial pressure PO2) using a thermodynamic model. It is found that O vacancies and insulating-type Cr2O3, in which commensurate electrons and holes are dominant before atomic defects are more favorable at high temperatures and at low PO2, while Cr vacancies and p-type Cr2O3 are more favorable at low temperatures and at high PO2, according to the calculations both in AFM and PM Cr2O3. However, the limits of dominant zones for defects and for semiconductor characters shift to higher temperatures or lower PO2 in PM state calculations.

2.
Nanoscale Res Lett ; 6(1): 187, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21711709

ABSTRACT

The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement.

3.
J Appl Crystallogr ; 42(Pt 2): 242-252, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-22477767

ABSTRACT

Odd electron diffraction patterns (EDPs) have been obtained by transmission electron microscopy (TEM) on silicon nanowires grown via the vapour-liquid-solid method and on silicon thin films deposited by electron beam evaporation. Many explanations have been given in the past, without consensus among the scientific community: size artifacts, twinning artifacts or, more widely accepted, the existence of new hexagonal Si phases. In order to resolve this issue, the microstructures of Si nanowires and Si thin films have been characterized by TEM, high-resolution transmission electron microscopy (HRTEM) and high-resolution scanning transmission electron microscopy. Despite the differences in the geometries and elaboration processes, the EDPs of the materials show great similarities. The different hypotheses reported in the literature have been investigated. It was found that the positions of the diffraction spots in the EDPs could be reproduced by simulating a hexagonal structure with c/a = 12(2/3)(1/2), but the intensities in many EDPs remained unexplained. Finally, it was established that all the experimental data, i.e. EDPs and HRTEM images, agree with a classical cubic silicon structure containing two microstructural defects: (i) overlapping Σ3 microtwins which induce extra spots by double diffraction, and (ii) nanotwins which induce extra spots as a result of streaking effects. It is concluded that there is no hexagonal phase in the Si nanowires and the Si thin films presented in this work.

4.
Nanotechnology ; 19(33): 335603, 2008 Aug 20.
Article in English | MEDLINE | ID: mdl-21730625

ABSTRACT

The first results on a simple new process for the direct fabrication of one-dimensional superlattices using common CVD chambers are presented. The experiments were carried out in a 200 mm industrial Centura reactor (Applied Materials). Low dimensionality and superlattices allow a significant increase in the figure of merit of thermoelectrics by controlling the transport of phonons and electrons. The monocrystalline nanowires produced according to this process are both one-dimensional and present heterostructures, with very thin layers (40 nm) of Si and SiGe. Concentrations up to 30 at.% Ge were obtained in the SiGe parts. Complementary techniques including transmission electronic microscopy (TEM), selected area electron diffraction (SAED), energy dispersive x-ray spectroscopy (EDS), scanning transmission electron microscopy (STEM) in bright field and high angle annular dark field (HAADF STEM), and energy-filtered transmission electron microscopy (EF-TEM) were used to characterize the nanoheterostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...