Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 14(1): 157-165, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34904618

ABSTRACT

Using first-principles calculations, we investigate six transition-metal nitride halides (TMNHs): HfNBr, HfNCl, TiNBr, TiNCl, ZrNBr, and ZrNCl as potential van der Waals (vdW) dielectrics for transition metal dichalcogenide (TMD) channel transistors. We calculate the exfoliation energies and bulk phonon energies and find that the six TMNHs are exfoliable and thermodynamically stable. We calculate both the optical and static dielectric constants in the in-plane and out-of-plane directions for both monolayer and bulk TMNHs. In monolayers, the out-of-plane static dielectric constant ranges from 5.04 (ZrNCl) to 6.03 (ZrNBr) whereas in-plane dielectric constants range from 13.18 (HfNBr) to 74.52 (TiNCl). We show that the bandgap of TMNHs ranges from 1.53 eV (TiNBr) to 3.36 eV (HfNCl) whereas the affinity ranges from 4.01 eV (HfNBr) to 5.60 eV (TiNCl). Finally, we estimate the dielectric leakage current density of transistors with six TMNH bilayer dielectrics with five monolayer channel TMDs (MoS2, MoSe2, MoTe2, WS2, and WSe2). For p-MOS TMD channel transistors 25 out of 30 combinations have a smaller leakage current than hexagonal boron nitride (hBN), a well-known vdW dielectric. The smallest bilayer leakage current of 1.15 × 10-2 A cm-2 is predicted for a p-MOS MoSe2 transistor with HfNCl as a gate dielectric. HfNBr, ZrNBr, and ZrNCl are also predicted to yield small leakage currents in certain p-MOS TMD transistors.

2.
Adv Mater ; : e1803109, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-30022534

ABSTRACT

The transfer-free direct growth of high-performance materials and devices can enable transformative new technologies. Here, room-temperature field-effect hole mobilities as high as 707 cm2 V-1 s-1 are reported, achieved using transfer-free, low-temperature (≤120 °C) direct growth of helical tellurium (Te) nanostructure devices on SiO2 /Si. The Te nanostructures exhibit significantly higher device performance than other low-temperature grown semiconductors, and it is demonstrated that through careful control of the growth process, high-performance Te can be grown on other technologically relevant substrates including flexible plastics like polyethylene terephthalate and graphene in addition to amorphous oxides like SiO2 /Si and HfO2 . The morphology of the Te films can be tailored by the growth temperature, and different carrier scattering mechanisms are identified for films with different morphologies. The transfer-free direct growth of high-mobility Te devices can enable major technological breakthroughs, as the low-temperature growth and fabrication is compatible with the severe thermal budget constraints of emerging applications. For example, vertical integration of novel devices atop a silicon complementary metal oxide semiconductor platform (thermal budget <450 °C) has been theoretically shown to provide a 10× systems level performance improvement, while flexible and wearable electronics (thermal budget <200 °C) can revolutionize defense and medical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...