Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(17): e2209615120, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37068242

ABSTRACT

The first records of Greenland Vikings date to 985 CE. Archaeological evidence yields insight into how Vikings lived, yet drivers of their disappearance in the 15th century remain enigmatic. Research suggests a combination of environmental and socioeconomic factors, and the climatic shift from the Medieval Warm Period (~900 to 1250 CE) to the Little Ice Age (~1250 to 1900 CE) may have forced them to abandon Greenland. Glacial geomorphology and paleoclimate research suggest that the Southern Greenland Ice Sheet readvanced during Viking occupation, peaking in the Little Ice Age. Counterintuitively, the readvance caused sea-level rise near the ice margin due to increased gravitational attraction toward the ice sheet and crustal subsidence. We estimate ice growth in Southwestern Greenland using geomorphological indicators and lake core data from previous literature. We calculate the effect of ice growth on regional sea level by applying our ice history to a geophysical model of sea level with a resolution of ~1 km across Southwestern Greenland and compare the results to archaeological evidence. The results indicate that sea level rose up to ~3.3 m outside the glaciation zone during Viking settlement, producing shoreline retreat of hundreds of meters. Sea-level rise was progressive and encompassed the entire Eastern Settlement. Moreover, pervasive flooding would have forced abandonment of many coastal sites. These processes likely contributed to the suite of vulnerabilities that led to Viking abandonment of Greenland. Sea-level change thus represents an integral, missing element of the Viking story.

2.
Commun Earth Environ ; 4(1): 328, 2023.
Article in English | MEDLINE | ID: mdl-38665194

ABSTRACT

Understanding sea level during the peak of the Last Interglacial (125,000 yrs ago) is important for assessing future ice-sheet dynamics in response to climate change. The coasts and continental shelves of northeastern Australia (Queensland) preserve an extensive Last Interglacial record in the facies of coastal strandplains onland and fossil reefs offshore. However, there is a discrepancy, amounting to tens of meters, in the elevation of sea-level indicators between offshore and onshore sites. Here, we assess the influence of geophysical processes that may have changed the elevation of these sea-level indicators. We modeled sea-level change due to dynamic topography, glacial isostatic adjustment, and isostatic adjustment due to coral reef loading. We find that these processes caused relative sea-level changes on the order of, respectively, 10 m, 5 m, and 0.3 m. Of these geophysical processes, the dynamic topography predictions most closely match the tilting observed between onshore and offshore sea-level markers.

3.
Sci Adv ; 7(18)2021 Apr.
Article in English | MEDLINE | ID: mdl-33931453

ABSTRACT

Geodetic, seismic, and geological evidence indicates that West Antarctica is underlain by low-viscosity shallow mantle. Thus, as marine-based sectors of the West Antarctic Ice Sheet (WAIS) retreated during past interglacials, or will retreat in the future, exposed bedrock will rebound rapidly and flux meltwater out into the open ocean. Previous studies have suggested that this contribution to global mean sea level (GMSL) rise is small and occurs slowly. We challenge this notion using sea level predictions that incorporate both the outflux mechanism and complex three-dimensional viscoelastic mantle structure. In the case of the last interglacial, where the GMSL contribution from WAIS collapse is often cited as ~3 to 4 meters, the outflux mechanism contributes ~1 meter of additional GMSL change within ~1 thousand years of the collapse. Using a projection of future WAIS collapse, we also demonstrate that the outflux can substantially amplify GMSL rise estimates over the next century.

SELECTION OF CITATIONS
SEARCH DETAIL
...