Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12528, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822029

ABSTRACT

In this study, we propose a new method for single-shot, high-resolution lensless imaging called double-slit holography. This technique combines the properties of in-line and off-axis holography in one single-shot measurement using the simplest double-slit device: a plate with two apertures. In double-slit holography, a plane wave illuminates the two apertures giving rise to two spherical waves. While diffraction of one spherical wave from a sample positioned behind the first aperture (the object aperture) provides the object wave, the other spherical wave diffracted from the second (reference) aperture provides the reference wave. The resulting interference pattern in the far-field (hologram) combines the properties of an in-line (or Gabor-type) hologram and an off-axis hologram due to the added reference wave from the second aperture. Both the object and reference waves have the same intensity, which ensures high contrast of the hologram. Due to the off-axis scheme, the amplitude and phase distributions of the sample can be directly reconstructed from the hologram, and the twin image can be easily separated. Due to the object wave being the same as in-line holography with a spherical wave, imaging at different magnifications is similarly done by simply adjusting the aperture-to-sample distance. The resolution of the reconstructed object is given by the numerical aperture of the optical setup and the diameter of the reference aperture. It is shown both by theory and simulations that the resolution of the reconstructed object depends on the diameter of the reference wave aperture but does not depend on the diameter of the object aperture. Light optical proof-of-concept experiments are provided. The proposed method can be particularly practical for X-rays, where optical elements such as beam splitters are not available and conventional off-axis holography schemes cannot be realised.

2.
Ultramicroscopy ; 253: 113807, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37459657

ABSTRACT

Low-energy electrons (20-300eV) hold the promise for low-dose, non-destructive, high-resolution imaging, but at the price of challenging data analysis. This study provides theoretical considerations and models for the quantitative analysis of experimental data observed in low-energy electron transmission microscopy and in-line holography. The scattering of low-energy electrons and the imaging parameters, such as the inelastic mean free path, point spread function, depth of focus, and resolution, are quantitatively described. It is shown that unlike high-energy electrons (20-300 keV), low-energy electrons (20-300eV) introduce a large phase shift into the probing electron waves. Using the projected potentials formalism, the maximal phase shift acquired by a 120eV electron wave scattered by a carbon atom is theoretically estimated to be 5.03 radian and experimentally measured to be between 3 and 7.5 radian. The point spread function evaluated for low-energy electrons shows that they diffract much stronger than high-energy electrons, and that only very thin objects of up to 3Å in thickness can be imaged in focus. Thus, when imaging an object of finite thickness, such as a macromolecule, the obtained image will always be blurred due to the out-of-focus signal. This can provide an explanation for a long-standing problem of limited resolution in low-energy electron holography of macromolecules. As for imaging of a macromolecule's structure, it is shown that the amplitude of the wavefront reconstructed from the sample's hologram provides the best match to the projected potential distribution of the macromolecule. To evaluate the absorption properties, the inelastic mean free path (IMFP) is considered. The IMFP values calculated from theoretical models agree with the measured values. The IMFP of about 5Å was measured by transmission through graphene of 50-200eV electrons. This result implies that the internal structure of only very thin samples can be imaged in transmission mode. A simple method to quantitatively evaluate the absorption of a specimen from its in-line hologram without the need to reconstruct the hologram is presented.

3.
Nat Nanotechnol ; 18(10): 1126-1127, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37488218
4.
Sci Rep ; 12(1): 11202, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778504

ABSTRACT

A low-dose imaging technique which uses recognition rather than recording of a full high-resolution image is proposed. A structural hypothesis is verified by probing the object with only a few particles (photons, electrons). Each scattered particle is detected in the far field and its position on the detector is analysed by applying Bayesian statistics. Already a few detected particles are sufficient to confirm a structural hypothesis at a probability exceeding 95%. As an example, the method is demonstrated as an application in optical character recognition, where a hand-written number is recognized from a set of different written numbers. In other provided examples, the structural hypothesis of a single macromolecule is recognized from a diffraction pattern acquired at an extremely low radiation dose, less than one X-ray photon or electron per Å2, thus leaving the macromolecule practically without any radiation damage. The proposed principle of low-dose recognition can be utilized in various applications, ranging from optical character recognition and optical security elements to recognizing a certain protein or its conformation.


Subject(s)
Electrons , Photons , Bayes Theorem , Macromolecular Substances , X-Ray Diffraction
5.
Ultramicroscopy ; 230: 113376, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34537574

ABSTRACT

Crystal diffraction is a well-established technique for high-resolution structural analysis of material science and biological samples. However, the recovered structure is a result of averaging over all the unit cells in the crystal, which smears out the imperfections, atomic defects, or asymmetries and chiral properties of the individual molecules. We propose Bragg holography, where a nano-crystal is imaged at a defocus distance allowing separation of the diffracted beams, without turning them into peaks. The presence of a reference wave gives rise to a Bragg hologram, which can be reconstructed by conventional holographic reconstruction algorithms. The recovered complex-valued wavefront contains the complete information about the atomic distribution in the crystal, including defects. Bragg holography is demonstrated for gold nano-crystals, and its feasibility for biological nano-crystals is shown.

6.
Phys Rev Lett ; 127(6): 063601, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34420341

ABSTRACT

Conventional three-dimensional (3D) imaging methods require multiple measurements of the sample in different orientation or scanning. When the sample is probed with coherent waves, a single two-dimensional (2D) intensity measurement is sufficient as it contains all the information of the 3D sample distribution. We show a method that allows reconstruction of 3D sample distribution from a single 2D intensity measurement, at the z resolution exceeding the classical limit. The method can be practical for radiation-sensitive materials, or where the experimental setup allows only one intensity measurement.

7.
Ultramicroscopy ; 228: 113336, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34174662

ABSTRACT

Conventionally, theoretical considerations in electron microscopy employ the weak phase approximation (WPA), which is only valid for weak scattering atomic elements (C, B, N) but not for transition metal dichalcogenide (TMD) materials. This leads to many exciting phenomena being overlooked. The present theoretical study goes beyond the weak phase approximation and thus the obtained results can be applied for two-dimensional (2D) crystals made of weakly as well of strongly scattering atoms, including the TMD materials. We show that the symmetry of an electron diffraction pattern, characterized by the Friedel's pairs, is governed by the symmetry of the exit wave distribution. For an infinite periodic crystal, the exit wave is an infinite and periodic 2D distribution which can be assigned an exit wave unit cell. The latter is determined by both the chemical composition of the crystallographic unit cell and the distance between the atomic layers. For 2D crystals of identical atoms, such as graphene, the exit wave unit cell is symmetrical and, thus, a symmetrical diffraction pattern is expected. For TMD materials, the exit wave unit cell is not symmetrical and a non-symmetrical diffraction pattern is expected for both monolayer and bilayer. Conventionally asymmetry in diffraction patterns has been explained by presence of dynamical (multiple) scattering effects. Our study shows that the asymmetry of a diffraction pattern can be explained solely by the asymmetry of the exit wave unit cell. The exit wave unit cell can be asymmetrical even in kinematic (single) scattering model. Therefore, conclusions about dynamical (multiple) scattering effects in 2D materials cannot be made based solely on asymmetry of a diffraction pattern. We also show that for hexagonally arranged atoms the second-order diffraction peaks show perfectly symmetrical intensities independently on the symmetry of the exit wave unit cell distribution.

8.
Appl Opt ; 60(5): 1304-1314, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33690573

ABSTRACT

Methods of three-dimensional deconvolution (3DD) or volumetric deconvolution of optical complex-valued wavefronts diffracted by 3D samples with the 3D point spread function are presented. Particularly, the quantitative correctness of the recovered 3D sample distributions is addressed. Samples consisting of point-like objects can be retrieved from their 3D diffracted wavefronts with non-iterative (Wiener filter) 3DD. Continuous extended samples, including complex-valued (phase) samples, can be retrieved with iterative (Gold and Richardson-Lucy) 3DD algorithms. It is shown that quantitatively correct 3D sample distribution can be recovered only with iterative 3DD, and with the optimal protocols provided. It is demonstrated that 3DD can improve the lateral resolution to the resolution limit, and the axial resolution can be at least four times better than the resolution limit. The presented 3DD methods of complex-valued optical fields can be applied for 3D optical imaging and holography.

9.
Opt Express ; 29(5): 7220, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726227

ABSTRACT

Correction of Eq. (20) in our published article [Opt. Express18, 22527 (2010)10.1364/OE.18.022527].

10.
Ultramicroscopy ; 219: 113020, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33022532

ABSTRACT

The convergent beam electron diffraction (CBED) patterns of twisted bilayer samples exhibit interference patterns in their CBED spots. Such interference patterns can be treated as off-axis holograms and the phase of the scattered waves, meaning the interlayer distance can be reconstructed. A detailed protocol of the reconstruction procedure is provided in this study. In addition, we derive an exact formula for reconstructing the interlayer distance from the recovered phase distribution, which takes into account the different chemical compositions of the individual monolayers. It is shown that one interference fringe in a CBED spot is sufficient to reconstruct the distance between the layers, which can be practical for imaging samples with a relatively small twist angle or when probing small sample regions. The quality of the reconstructed interlayer distance is studied as a function of the twist angle. At smaller twist angles, the reconstructed interlayer distance distribution is more precise and artefact free. At larger twist angles, artefacts due to the moiré structure appear in the reconstruction. A method for the reconstruction of the average interlayer distance is presented. As for resolution, the interlayer distance can be reconstructed by the holographic approach at an accuracy of ±0.5 Å, which is a few hundred times better than the intrinsic z-resolution of diffraction limited resolution, as expressed through the spread of the measured k-values. Moreover, we show that holographic CBED imaging can detect variations as small as 0.1 Å in the interlayer distance, though the quantitative reconstruction of such variations suffers from large errors.

11.
Materials (Basel) ; 13(14)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664297

ABSTRACT

In this paper, we present the theoretical background to electron scattering in an atomic potential and the differences between low- and high-energy electrons interacting with matter. We discuss several interferometric techniques that can be realized with low- and high-energy electrons and which can be applied to the imaging of non-crystalline samples and individual macromolecules, including in-line holography, point projection microscopy, off-axis holography, and coherent diffraction imaging. The advantages of using low- and high-energy electrons for particular experiments are examined, and experimental schemes for holography and coherent diffraction imaging are compared.

12.
J Opt Soc Am A Opt Image Sci Vis ; 37(1): 45, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-32118879

ABSTRACT

This publisher's note corrects the paper type and title of J. Opt. Soc. Am. A36, D31 (2019)JOAOD60740-323210.1364/JOSAA.36.000D31.

13.
Ultramicroscopy ; 212: 112976, 2020 May.
Article in English | MEDLINE | ID: mdl-32217349

ABSTRACT

Convergent beam electron diffraction is routinely applied for studying deformation and local strain in thick crystals by matching the crystal structure to the observed intensity distributions. Recently, it has been demonstrated that CBED can be applied for imaging two-dimensional (2D) crystals where a direct reconstruction is possible and three-dimensional crystal deformations at a nanometre resolution can be retrieved. Here, we demonstrate that second-order effects allow for further information to be obtained regarding stacking arrangements between the crystals. Such effects are especially pronounced in samples consisting of multiple layers of 2D crystals. We show, using simulations and experiments, that twisted multilayer samples exhibit extra modulations of interference fringes in CBED patterns, i. e., a CBED moiré. A simple and robust method for the evaluation of the composition and the number of layers from a single-shot CBED pattern is demonstrated.

14.
J Opt Soc Am A Opt Image Sci Vis ; 36(12): D31-D40, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31873366

ABSTRACT

This paper provides a tutorial of iterative phase retrieval algorithms based on the Gerchberg-Saxton (GS) algorithm applied in digital holography. In addition, a novel GS-based algorithm that allows reconstruction of 3D samples is demonstrated. The GS-based algorithms recover a complex-valued wavefront using wavefront back-and-forth propagation between two planes with constraints superimposed in these two planes. Iterative phase retrieval allows quantitatively correct and twin-image-free reconstructions of object amplitude and phase distributions from its in-line hologram. The present work derives the quantitative criteria on how many holograms are required to reconstruct a complex-valued object distribution, be it a 2D or 3D sample. It is shown that for a sample that can be approximated as a 2D sample, a single-shot in-line hologram is sufficient to reconstruct the absorption and phase distributions of the sample. Previously, the GS-based algorithms have been successfully employed to reconstruct samples that are limited to a 2D plane. However, realistic physical objects always have some finite thickness and therefore are 3D rather than 2D objects. This study demonstrates that 3D samples, including 3D phase objects, can be reconstructed from two or more holograms. It is shown that in principle, two holograms are sufficient to recover the entire wavefront diffracted by a 3D sample distribution. In this method, the reconstruction is performed by applying iterative phase retrieval between the planes where intensity was measured. The recovered complex-valued wavefront is then propagated back to the sample planes, thus reconstructing the 3D distribution of the sample. This method can be applied for 3D samples such as 3D distribution of particles, thick biological samples, and other 3D phase objects. Examples of reconstructions of 3D objects, including phase objects, are provided. Resolution enhancement obtained by iterative extrapolation of holograms is also discussed.

15.
Sci Rep ; 9(1): 8889, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222124

ABSTRACT

Low-energy electrons offer a unique possibility for long exposure imaging of individual biomolecules without significant radiation damage. In addition, low-energy electrons exhibit high sensitivity to local potentials and thus can be employed for imaging charges as small as a fraction of one elementary charge. The combination of these properties makes low-energy electrons an exciting tool for imaging charge transport in individual biomolecules. Here we demonstrate the imaging of individual deoxyribonucleic acid (DNA) molecules at the resolution of about 1 nm with simultaneous imaging of the charging of the DNA molecules that is of the order of less than one elementary charge per nanometer. The cross-correlation analysis performed on different sections of the DNA network reveals that the charge redistribution between the two regions is correlated. Thus, low-energy electron microscopy is capable to provide simultaneous imaging of macromolecular structure and its charge distribution which can be beneficial for imaging and constructing nano-bio-sensors.


Subject(s)
DNA/ultrastructure , Microscopy, Electron/methods , DNA/chemistry , Nucleic Acid Conformation
16.
Appl Opt ; 58(13): 3597-3603, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31044868

ABSTRACT

This work presents an overview of spatial resolution criteria in classical optics, digital optics, and holography. Although the classical Abbe and Rayleigh resolution criteria have been thoroughly discussed in the literature, there are a few issues that still need to be addressed, e.g., the axial resolution criteria for coherent and incoherent radiation (which is a crucial parameter in 3D imaging), the resolution criteria in the Fresnel regime, and the lateral and the axial resolution criteria in digital optics and holography. This work discusses these issues and provides a simple guide on which resolution criteria should be applied for a particular imaging scheme: coherent/incoherent, far- and near-field, lateral and axial resolution. Different resolution criteria such as two-points resolution and the resolution obtained from the image spectrum (diffraction pattern) are compared and demonstrated with simulated examples. It is shown that, for coherent light, the classical Abbe and Rayleigh resolution criteria do not provide accurate estimation of the lateral and axial resolution. The lateral and axial resolution criteria based on the evaluation of the spectrum of the diffracted wave provide more precise estimation of the resolution for coherent and incoherent light. It is also shown that the resolution criteria derived in approximation of the far-field can be applied for the near-field (Fresnel) imaging regime.

17.
Struct Dyn ; 6(2): 024304, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31041361

ABSTRACT

We demonstrate that highly ordered two-dimensional crystals of ligand-capped gold nanoparticles display a local photo-mechanical stiffness as high as that of solids such as graphite. In out-of-equilibrium electron diffraction experiments, a strong temperature jump is induced in a thin film with a femtosecond laser pulse. The initial electronic excitation transfers energy to the underlying structural degrees of freedom, with a rate generally proportional to the stiffness of the material. Using femtosecond small-angle electron diffraction, we observe the temporal evolution of the diffraction feature associated with the nearest-neighbor nanoparticle distance. The Debye-Waller decay for the octanethiol-capped nanoparticle supracrystal, in particular, is found to be unexpectedly fast, almost as fast as the stiffest solid known and observed by the same technique, i.e., graphite. Our observations unravel that local stiffness in a dense supramolecular assembly can be created by van der Waals interactions up to a level comparable to crystalline systems characterized by covalent bonding.

18.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 4): 523-531, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-32830710

ABSTRACT

Multi-slice simulations of electron diffraction by three-dimensional protein crystals have indicated that structure solution would be severely impeded by dynamical diffraction, especially when crystals are more than a few unit cells thick. In practice, however, dynamical diffraction turned out to be less of a problem than anticipated on the basis of these simulations. Here it is shown that two scattering phenomena, which are usually omitted from multi-slice simulations, reduce the dynamical effect: solvent scattering reduces the phase differences within the exit beam and inelastic scattering followed by elastic scattering results in diffusion of dynamical scattering out of Bragg peaks. Thus, these independent phenomena provide potential reasons for the apparent discrepancy between theory and practice in protein electron crystallography.


Subject(s)
Crystallography/methods , Electrons , Proteins/chemistry , Cryoelectron Microscopy , Crystallization , Elasticity , Microscopy, Electron, Transmission , Solvents/chemistry
19.
Ultramicroscopy ; 197: 46-52, 2019 02.
Article in English | MEDLINE | ID: mdl-30496888

ABSTRACT

We investigate imaging of moiré structures in free-standing twisted bilayer graphene (TBG) carried out by transmission electron microscopy (TEM) in diffraction and in-line Gabor holography modes. Electron diffraction patterns of TBG acquired at typical TEM electron energies of 80-300 keV exhibit the diffraction peaks caused by diffraction on individual layers. However, diffraction peaks at the scattering angles related to the periodicity of the moiré structure have not been observed in such diffraction patterns. We show that diffraction on moiré structure can create intense diffraction peaks if the energy of the probing electrons is very low, in the range of a few tens of eV. Experimental diffraction patterns of TBG acquired with low-energy electrons of 236 eV exhibiting peaks attributed to the moiré structure periodicity are shown. In holography mode, the intensity of the wave transmitted through the sample and measured in the far-field can be enhanced or decreased depending on the atomic arrangement, as for example AA or AB stacking. Thus, a decrease of intensity in the far-field must not necessarily be associated with some absorption inside the sample but can simply be a result of a particular atomic arrangement. We believe that our findings can be important for exploiting graphene as a support in electron imaging.

20.
Opt Express ; 26(23): 30991-31017, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30469988

ABSTRACT

Coherent diffraction imaging (CDI) allows the retrieval of an isolated object's structure, such as a macromolecule, from its diffraction pattern. CDI requires the fulfillment of two conditions: the imaging radiation must be coherent and the object must be isolated. We discuss that it is possible to directly retrieve the molecular structure from its diffraction pattern, which was acquired neither with coherent radiation nor from an individual molecule. This is provided that the molecule exhibits periodicity in one direction, as in the case of fiber diffraction. We demonstrate that, when we apply iterative phase retrieval methods to a fiber diffraction pattern, the repeating unit; that is, the molecule structure, can directly be reconstructed without any prior modeling. For example, we recover the the DNA double helix's structure in three-dimensions from its two-dimensional X-ray fiber diffraction pattern, Photograph (Photo) 51, which was acquired in Raymond Gosling and Rosalind Franklin's famous experiment at a resolution of 3.4 Å.


Subject(s)
DNA/chemistry , Imaging, Three-Dimensional/methods , X-Ray Diffraction/methods , Algorithms , Animals , Humans , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...