Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Bone Miner Res ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832703

ABSTRACT

Low bone mineral density and impaired bone qualities have been shown to be important prognostic factors for curve progression in Adolescent Idiopathic Scoliosis (AIS). There is no evidence-based integrative interpretation method to analyse high-resolution peripheral quantitative computed tomography (HR-pQCT) data in AIS. This study aimed to (a) utilize unsupervised machine learning to cluster bone microarchitecture phenotypes on HR-pQCT parameters in AIS girls, (b) assess the phenotypes' risk of curve progression and progression to surgical threshold at skeletal maturity (primary cohort), and (c) investigate risk of curve progression in a separate cohort of mild AIS girls whose curve severity did not reach bracing threshold at recruitment (secondary cohort). Patients were followed up prospectively for 6.22 ± 0.33 years in the primary cohort (N = 101). Three bone microarchitecture phenotypes were clustered by Fuzzy C-Means at time of peripubertal peak height velocity (PHV). Phenotype-1 had normal bone characteristics. Phenotype-2 was characterized by low bone volume and high cortical bone density, and Phenotype-3 had low cortical and trabecular bone density and impaired trabecular microarchitecture. The difference in bone qualities amongst the phenotypes was significant at peripubertal PHV and continued to skeletal maturity. Phenotype-3 had significantly increased risk of curve progression to surgical threshold at skeletal maturity (Odd Ratios (OR) = 4.88; 95% Confidence Interval (CI): 1.03-28.63). In the secondary cohort (N = 106), both Phenotype-2 (adjusted OR = 5.39; 95%CI: 1.47-22.76) and Phenotype-3 (adjusted OR = 3.67; 95%CI: 1.05-14.29) had increased risk of curve progression ≥6° with mean follow-up of 3.03 ± 0.16 years. In conclusion, three distinct bone microarchitecture phenotypes could be clustered by unsupervised machine learning on HR-pQCT generated bone parameters at peripubertal PHV in AIS. The bone qualities reflected by these phenotypes were found to have significant differentiating risk of curve progression and progression to surgical threshold at skeletal maturity in AIS.


Adolescent Idiopathic Scoliosis (AIS) is an abnormal spinal curvature commonly presents during puberty growth. Evidence has shown that low bone mineral density and impaired bone qualities are important risk factors for curve progression in AIS. High-resolution peripheral quantitative computed tomography (HR-pQCT) has improved our understanding of bone qualities in AIS. It generates a large amount of quantitative and qualitative bone parameters from a single measurement, but the data are not easy for clinicians to interpret and analyse. This study enrolled AIS girls and used unsupervised machine learning model to analyse their HR-pQCT data at first clinic visit. The model clustered the patients into 3 bone microarchitecture phenotypes (i.e. Phenotype-1: normal, Phenotype-2: low bone volume and high cortical bone density, and Phenotype-3: low cortical and trabecular bone density and impaired trabecular microarchitecture). They were longitudinally followed up for 6 years until skeletal maturity. We observed the three phenotypes were persistent, and Phenotype-3 had a significantly increased risk of curve progression to severity that requires invasive spinal surgery (Odds Ratio = 4.88, P = 0.029). The difference in bone qualities reflected by these 3 distinct phenotypes could aid clinicians to differentiate risk of curve progression and surgery at early stages of AIS.

2.
J Clin Med ; 13(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38337461

ABSTRACT

Introduction: Bracing is one of the first-line treatment for early-onset idiopathic scoliosis (EOIS) to control curves from progression. This study aimed to explore the determinants that govern bracing effectiveness in EOIS. Methods: One hundred and eleven patients with EOIS (mean age of 8.6 ± 1.25 at diagnosis) received bracing treatment and had a final follow-up beyond skeletal maturity were identified from records between 1988 and 2021. Demographic data and clinical features of spinal curvature were obtained for correlation analyses to determine the associations between curve outcomes and clinical features. Results: Most patients were female (85.6%) and had a major curve on the left side (67%). The mean baseline Cobb angle of major curves was 21.73 ± 7.92°, with a mean Cobb angle progression of 18.05 ± 19.11°. The average bracing duration was 5.3 ± 1.9 years. Only 26 (23.4%) of them underwent surgery. The final Cobb angle and curve progression at the final follow-up with a Cobb angle of ≥50° were positively correlated with the initial Cobb angle (r = 0.206 and r = 0.313, respectively) and negatively correlated with maturity parameters. The lumbar curve type was found to correlate with a smaller final Cobb angle. Conclusions: The majority of patients had a final Cobb angle < 50°, which was considered a successful bracing outcome. The final Cobb angle correlated with the initial Cobb angle and curve types observed in EOIS.

3.
Front Pediatr ; 11: 1258454, 2023.
Article in English | MEDLINE | ID: mdl-38027290

ABSTRACT

Introduction: Adolescent idiopathic scoliosis (AIS) is characterized by deranged bone and muscle qualities, which are important prognostic factors for curve progression. This retrospective case-control study aims to investigate whether the baseline muscle parameters, in addition to the bone parameters, could predict curve progression in AIS. Methods: The study included a cohort of 126 female patients diagnosed with AIS who were between the ages of 12 and 14 years old at their initial clinical visit. These patients were longitudinally followed up every 6 months (average 4.08 years) until they reached skeletal maturity. The records of these patients were thoroughly reviewed as part of the study. The participants were categorized into two sub-groups: the progressive AIS group (increase in Cobb angle of ≥6°) and the stable AIS group (increase in Cobb angle <6°). Clinical and radiological assessments were conducted on each group. Results: Cobb angle increase of ≥6° was observed in 44 AIS patients (34.9%) prior to skeletal maturity. A progressive AIS was associated with decreased skeletal maturity and weight, lower trunk lean mass (5.7%, p = 0.027) and arm lean mass (8.9%, p < 0.050), weaker dominant handgrip strength (8.8%, p = 0.027), deranged cortical compartment [lower volumetric bone mineral density (vBMD) by 6.5%, p = 0.002], and lower bone mechanical properties [stiffness and estimated failure load lowered by 13.2% (p = 0.005) and 12.5% (p = 0.004)]. The best cut-off threshold of maximum dominant handgrip strength is 19.75 kg for distinguishing progressive AIS from stable AIS (75% sensitivity and 52.4% specificity, p = 0.011). Discussion: Patients with progressive AIS had poorer muscle and bone parameters than patients with stable AIS. The implementation of a cut-off threshold in the baseline dominant handgrip strength could potentially be used as an additional predictor, in addition to bone parameters, for identifying individuals with AIS who are at higher risk of experiencing curve progression.

4.
Arthrosc Tech ; 8(2): e111-e115, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30899661

ABSTRACT

Stenosing tenosynovitis of the extensor carpi ulnaris is one of the causes of dorsoulnar wrist pain. Conservative treatment is usually effective to alleviate the pain. Surgical release of the retinaculum of the sixth extensor compartment is indicated if conservative treatment cannot alleviate the pain. The purpose of this Technical Note is to describe the technical details of endoscopic release of the sixth extensor compartment via a 2-portal approach. Endoscopic resection of a ganglion over the sixth compartment can also be performed via the same approach.

5.
Arthrosc Tech ; 8(2): e117-e120, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30899662

ABSTRACT

Stenosing tenosynovitis of the posterior tibial tendon is a cause of posteromedial ankle pain. Conservative treatment is often ineffective, and surgery is usually required for alleviation of symptoms. Stenosis of the tendon sheath can be overcome by release of the tendon sheath or deepening of the retromalleolar groove. These procedures can be performed endoscopically. The purpose of this Technical Note is to describe the technical details of endoscopic release of the posterior tibial tendon sheath with the advantage of minimal soft tissue dissection and titrated tendon sheath release according to the extent of stenosis. Associated tendon pathology and hindfoot malalignment should be treated accordingly.

SELECTION OF CITATIONS
SEARCH DETAIL
...