Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 9(2)2023 02.
Article in English | MEDLINE | ID: mdl-36757789

ABSTRACT

Tick-borne diseases have recently been considered a potential emerging public health threat in Malaysia; however, fundamental studies into tick-borne pathogens and microbiome appear limited. In this study, six tick species (Ixodes granulatus, Haemaphysalis hystricis, Haemaphysalis shimoga, Dermacentor compactus, Dermacentor steini and Dermacentor atrosignatus) collected from two primary forests and an oil palm plantation in Sarawak, Malaysian Borneo, were used for microbiome analysis targeting bacterial 16S rDNA using next-generation sequencing (NGS). In addition, bacterial species were further characterized in conventional PCRs to identify potential pathogens. Sequences generated from NGS were first filtered with the Decontam package in R before subsequent microbial diversity analyses. Alpha and beta analyses revealed that the genus Dermacentor had the highest microbial diversity, and H. shimoga significantly differed in microbial composition from other tick species. Alpha and beta diversities were also significantly different between developmental stages of H. shimoga. Furthermore, we observed that some bacterial groups were significantly more abundant in certain tick species and developmental stages of H. shimoga. We tested the relative abundances using pairwise linear discriminant analysis effect size (LEfSe), which also revealed significant microbial composition differences between Borrelia-positive and Borrelia-negative I. granulatus ticks. Finally, pathogenic and potentially pathogenic bacteria circulating in different tick species, such as Rickettsia heilongjiangensis, Ehrlichia sp., Anaplasma sp. and Bartonella spp. were characterized by PCR and sequencing. Moreover, Coxiella and Francisella-like potential symbionts were identified from H. shimoga and D. steini, respectively. More studies are required to unravel the factors associated with the variations observed in this study.


Subject(s)
Ixodes , Ixodidae , Microbiota , Animals , Ixodidae/microbiology , Malaysia , Borneo , Microbiota/genetics
2.
Pathogens ; 11(5)2022 May 10.
Article in English | MEDLINE | ID: mdl-35631087

ABSTRACT

Tick-borne diseases (TBDs), including emerging and re-emerging zoonoses, are of public health importance worldwide; however, TBDs tend to be overlooked, especially in countries with fewer resources, such as Zambia and Angola. Here, we investigated Rickettsia, Anaplasmataceae, and Apicomplexan pathogens in 59 and 96 adult ticks collected from dogs and cattle, respectively, in Shangombo, a town at the Zambia-Angola border. We detected Richkettsia africae and Rickettsia aeschilimannii in 15.6% of Amblyomma variegatum and 41.7% of Hyalomma truncatum ticks, respectively. Ehrlichia minasensis was detected in 18.8% of H. truncatum, and Candidatus Midichloria mitochondrii was determined in Hyalomma marginatum. We also detected Babesia caballi and Theileria velifera in A. variegatum ticks with a 4.4% and 6.7% prevalence, respectively. In addition, Hepatozoon canis was detected in 6.5% of Rhipicephalus lunulatus and 4.3% of Rhipicephalus sanguineus. Coinfection of R. aeshilimannii and E. minasensis were observed in 4.2% of H. truncatum. This is the first report of Ca. M. mitochondrii and E. minasensis, and the second report of B. caballi, in the country. Rickettsia africae and R. aeschlimannii are pathogenic to humans, and E. minasensis, B. caballi, T. velifera, and H. canis are pathogenic to animals. Therefore, individuals, clinicians, veterinarians, and pet owners should be aware of the distribution of these pathogens in the area.

3.
Comput Struct Biotechnol J ; 20: 1979-1992, 2022.
Article in English | MEDLINE | ID: mdl-35521555

ABSTRACT

Research on vector-associated microbiomes has been expanding due to increasing emergence of vector-borne pathogens and awareness of the importance of symbionts in the vector physiology. However, little is known about microbiomes of argasid (or soft-bodied) ticks due to limited access to specimens. We collected four argasid species (Argas japonicus, Carios vespertilionis, Ornithodoros capensis, and Ornithodoros sawaii) from the nests or burrows of their vertebrate hosts. One laboratory-reared argasid species (Ornithodoros moubata) was also included. Attempts were then made to isolate and characterize potential symbionts/pathogens using arthropod cell lines. Microbial community structure was distinct for each tick species. Coxiella was detected as the predominant symbiont in four tick species where dual symbiosis between Coxiella and Rickettsia or Coxiella and Francisella was observed in C. vespertilionis and O. moubata, respectively. Of note, A. japonicus lacked Coxiella and instead had Occidentia massiliensis and Thiotrichales as alternative symbionts. Our study found strong correlation between tick species and life stage. We successfully isolated Oc. massiliensis and characterized potential pathogens of genera Ehrlichia and Borrelia. The results suggest that there is no consistent trend of microbiomes in relation to tick life stage that fit all tick species and that the final interpretation should be related to the balance between environmental bacterial exposure and endosymbiont ecology. Nevertheless, our findings provide insights on the ecology of tick microbiomes and basis for future investigations on the capacity of argasid ticks to carry novel pathogens with public health importance.

4.
Microorganisms ; 9(11)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34835531

ABSTRACT

Members of the genus Borrelia are arthropod-borne spirochetes that are human and animal pathogens. Vertebrate hosts, including wild animals, are pivotal to the circulation and maintenance of Borrelia spirochetes. However, information on Borrelia spirochetes in vertebrate hosts in Zambia is limited. Thus, we aimed to investigate the presence of Borrelia spirochetes in wild animals and cattle in Zambia. A total of 140 wild animals of four species and 488 cattle DNA samples from /near the Kafue National Park were collected for real-time PCR screening, followed by characterization using three different genes with positive samples. Five impalas and 20 cattle tested positive using real-time PCR, and sequence analysis revealed that the detected Borrelia were identified to be Borrelia theileri, a causative agent of bovine borreliosis. This is the first evidence of Borrelia theileri in African wildlife and cattle in Zambia. Our results suggest that clinical differentiation between bovine borreliosis and other bovine diseases endemic in Zambia is required for better treatment and control measures. As this study only included wild and domestic animals in the Kafue ecosystem, further investigations in other areas and with more wildlife and livestock species are needed to clarify a comprehensive epidemiological status of Borrelia theileri in Zambia.

5.
Pathogens ; 9(10)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076567

ABSTRACT

Members of the Borrelia burgdorferi sensu lato (Bbsl) complex are etiological agents of Lyme disease (LD), and Borrelia miyamotoi is one of the relapsing fever Borrelia (RFB). Despite the serological evidence of LD in Malaysia, there has been no report from Sarawak, Malaysian Borneo. Thus, this study aimed to detect and characterize Borrelia in rodents and Ixodes ticks from primary forests and an oil palm (OP) plantation in Sarawak. Borrelia yangtzensis (a member of the Bbsl complex) was detected in 43.8% (14/32) of Ixodes granulatus; most of the positive ticks were from the OP plantation (13/14). Out of 56 rodents, B. yangtzensis was detected in four Rattus spp. from the OP plantation and B. miyamotoi was detected in one rodent, Sundamys muelleri, from the primary forest. Further, the positive samples of B. yangtzensis were randomly selected for multilocus sequence analysis (MLSA). The MLSA results of successfully amplified tick samples revealed a clustering with the sequences isolated from Japan and China. This study is the first evidence of B. miyamotoi, a known human pathogen in Malaysia, and B. yangtzensis, which is circulating in ticks and rodents in Sarawak, Malaysian Borneo, and presenting a new geographical record of the Borrelia spp.

SELECTION OF CITATIONS
SEARCH DETAIL
...