Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Indoor Air ; 31(3): 769-782, 2021 05.
Article in English | MEDLINE | ID: mdl-33108019

ABSTRACT

Household humidification is widely practiced to combat dry indoor air. While the benefits of household humidification are widely perceived, its implications to the indoor air have not been critically appraised. In particular, ultrasonic humidifiers are known to generate fine particulate matter (PM). In this study, we first conducted laboratory experiments to investigate the size, quantity, and chemical composition of PM generated by an ultrasonic humidifier. The mass of PM generated showed a correlation with the total alkalinity of charge water, suggesting that CaCO3 is likely making a major contribution to PM. Ion chromatography analysis revealed a large amount of SO42- in PM, representing a previously unrecognized indoor source. Preliminary results of organic compounds being present in humidifier PM are also presented. A whole-house experiment was further conducted at an actual residential house, with five low-cost sensors (AirBeam) monitoring PM in real time. Operation of a single ultrasonic humidifier resulted in PM2.5 concentrations up to hundreds of µg m-3 , and its influence extended across the entire household. The transport and loss of PM2.5 depended on the rate of air circulation and ventilation. This study emphasizes the need to further investigate the impact of humidifier operation, both on human health and on the indoor atmospheric chemistry, for example, partitioning of acidic and basic compounds.


Subject(s)
Air Pollution, Indoor/statistics & numerical data , Humidifiers , Particulate Matter , Air Pollutants , Environmental Monitoring , Humans , Organic Chemicals , Particle Size , Ultrasonics , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...