Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 32(5): 1497-1509, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38429928

ABSTRACT

The hallmark of epidermolysis bullosa (EB) is fragile attachment of epithelia due to genetic variants in cell adhesion genes. We describe 16 EB patients treated in the ear, nose, and throat department of a tertiary pediatric hospital linked to the United Kingdom's national EB unit between 1992 and 2023. Patients suffered a high degree of morbidity and mortality from laryngotracheal stenosis. Variants in laminin subunit alpha-3 (LAMA3) were found in 10/15 patients where genotype was available. LAMA3 encodes a subunit of the laminin-332 heterotrimeric extracellular matrix protein complex and is expressed by airway epithelial basal stem cells. We investigated the benefit of restoring wild-type LAMA3 expression in primary EB patient-derived basal cell cultures. EB basal cells demonstrated weak adhesion to cell culture substrates, but could otherwise be expanded similarly to non-EB basal cells. In vitro lentiviral overexpression of LAMA3A in EB basal cells enabled them to differentiate in air-liquid interface cultures, producing cilia with normal ciliary beat frequency. Moreover, transduction restored cell adhesion to levels comparable to a non-EB donor culture. These data provide proof of concept for a combined cell and gene therapy approach to treat airway disease in LAMA3-affected EB.


Subject(s)
Cell Adhesion , Epidermolysis Bullosa , Laminin , Lentivirus , Humans , Laminin/metabolism , Laminin/genetics , Epidermolysis Bullosa/genetics , Epidermolysis Bullosa/metabolism , Epidermolysis Bullosa/therapy , Epidermolysis Bullosa/pathology , Child , Lentivirus/genetics , Male , Female , Child, Preschool , Genetic Therapy/methods , Genetic Vectors/genetics , Epithelial Cells/metabolism , Cells, Cultured , Gene Expression , Adolescent , Infant
2.
Biosci Rep ; 41(1)2021 01 29.
Article in English | MEDLINE | ID: mdl-33289517

ABSTRACT

CRISPR systems build adaptive immunity against mobile genetic elements by DNA capture and integration catalysed by Cas1-Cas2 protein complexes. Recent studies suggested that CRISPR repeats and adaptation module originated from a novel type of DNA transposons called casposons. Casposons encode a Cas1 homologue called casposase that alone integrates into target molecules single and double-stranded DNA containing terminal inverted repeats (TIRs) from casposons. A recent study showed Methanosarcina mazei casposase is able to integrate random DNA oligonucleotides, followed up in this work using Acidoprofundum boonei casposase, from which we also observe promiscuous substrate integration. Here we first show that the substrate flexibility of Acidoprofundum boonei casposase extends to random integration of DNA without TIRs, including integration of a functional gene. We then used this to investigate targeting of the casposase-catalysed DNA integration reactions to specific DNA sites that would allow insertion of defined DNA payloads. Casposase-Cas9 fusions were engineered that were catalytically proficient in vitro and generated RNA-guided DNA integration products from short synthetic DNA or a gene, with or without TIRs. However, DNA integration could still occur unguided due to the competing background activity of the casposase moiety. Expression of Casposase-dCas9 in Escherichia coli cells effectively targeted chromosomal and plasmid lacZ revealed by reduced ß-galactosidase activity but DNA integration was not detected. The promiscuous substrate integration properties of casposases make them potential DNA insertion tools. The Casposase-dCas9 fusion protein may serves as a prototype for development in genetic editing for DNA insertion that is independent of homology-directed DNA repair.


Subject(s)
CRISPR-Cas Systems , DNA Transposable Elements , DNA/metabolism , R-Loop Structures , Escherichia coli/genetics , In Vitro Techniques , Methanosarcina/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...