Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 902: 166101, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37558066

ABSTRACT

The use of artificial light at night (ALAN) enables social and commercial activities for urban living. However, the excessive usage of lighting causes nuisance and waste of energy. Light is provided to illuminate target areas on the street level where activities take place, yet light can also cause trespass to residents at the floors above. While regulations are beginning to cover light design, simulation tools for the outdoor environment have also become more popular for assessing the design condition. Simulation tools allow visualisation of the impact of the selected light sources on those who are affected. However, this cause-and-effect relationship is not easy to determine in the complex urban environment. The current work offers a simple methodology that takes site survey results and correlates them with the simulation model to determine lighting impact on the investigated area in 3D. Four buildings in two mixed commercial and residential streets in Hong Kong were studied. Data collection from each residential building requires lengthy work and permission from each household. Therefore, a valid lighting simulation model could help determine the light pollution impact in the area. A light model using DIALux is developed and calibrated by correlating the simulated data with the actual measured data. The correlation value R2 achieved ranged from 0.95 to 0.99, verifying the accuracy of this model and matched from 340 lx to 46 lx for the lower to higher floors of one building and 10 lx to 4 lx for floors of another building. This model can also be applied to human health research, by providing light-level data on residential windows in an area or determining the environmental impact of a development project.

2.
Foods ; 10(9)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34574186

ABSTRACT

The most common pasteurisation method used by human milk banks is Holder pasteurisation. This involves thermal processing, which can denature important proteins and can potentially reduce the natural antimicrobial properties found in human milk. This study assesses the application of a hybrid method comprised of freeze-drying followed by low-dose gamma-irradiation for nonthermal donor human milk pasteurisation. Freeze-drying donor human milk followed by gamma-irradiation at 2 kGy was as efficient as Holder pasteurisation in the reduction of bacterial inoculants of Staphylococcus aureus (106 cfu/mL) and Salmonella typhimurium (106 cfu/mL) in growth inhibition assays. These assays also demonstrated that human milk naturally inhibits the growth of bacterial inoculants S. aureus, S. typhimurium, and Escherichia coli. Freeze drying (without gamma-irradiation) did not significantly reduce this natural growth inhibition. By contrast, Holder pasteurisation significantly reduced the milk's natural antimicrobial effect on S. aureus growth after 6 h (-19.8% p = 0.01). Freeze-dried and then gamma-irradiated donor human milk showed a strong antimicrobial effect across a dose range of 2-50 kGy, with only a minimal growth of S. aureus observed after 6 h incubation. Thus, a hybrid method of freeze-drying followed by 2 kGy of gamma-irradiation preserves antimicrobial properties and enables bulk pasteurisation within sealed packaging of powderised donor human milk. This work forwards a goal of increasing shelf life and simplifying storage and transportation, while also preserving functionality and antimicrobial properties.

3.
JMIR Public Health Surveill ; 6(3): e19399, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32788148

ABSTRACT

BACKGROUND: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the number of cases of coronavirus disease (COVID-19) in the United States has exponentially increased. Identifying and monitoring individuals with COVID-19 and individuals who have been exposed to the disease is critical to prevent transmission. Traditional contact tracing mechanisms are not structured on the scale needed to address this pandemic. As businesses reopen, institutions and agencies not traditionally engaged in disease prevention are being tasked with ensuring public safety. Systems to support organizations facing these new challenges are critically needed. Most currently available symptom trackers use a direct-to-consumer approach and use personal identifiers, which raises privacy concerns. OBJECTIVE: Our aim was to develop a monitoring and reporting system for COVID-19 to support institutions conducting monitoring activities without compromising privacy. METHODS: Our multidisciplinary team designed a symptom tracking system after consultation with experts. The system was designed in the Georgetown University AvesTerra knowledge management environment, which supports data integration and synthesis to identify actionable events and maintain privacy. We conducted a beta test for functionality among consenting Georgetown University medical students. RESULTS: The symptom tracker system was designed based on guiding principles developed during peer consultations. Institutions are provided access to the system through an efficient onboarding process that uses clickwrap technology to document agreement to limited terms of use to rapidly enable free access. Institutions provide their constituents with a unique identifier to enter data through a web-based user interface to collect vetted symptoms as well as clinical and epidemiologic data. The website also provides individuals with educational information through links to the COVID-19 prevention recommendations from the US Centers for Disease Control and Prevention. Safety features include instructions for people with new or worsening symptoms to seek care. No personal identifiers are collected in the system. The reporter mechanism safeguards data access so that institutions can only access their own data, and it provides institutions with on-demand access to the data entered by their constituents, organized in summary reports that highlight actionable data. Development of the system began on March 15, 2020, and it was launched on March 20, 2020. In the beta test, 48 Georgetown University School of Medicine students or their social contacts entered data into the system from March 31 to April 5, 2020. One of the 48 users (2%) reported active COVID-19 infection and had no symptoms by the end of the monitoring period. No other participants reported symptoms. Only data with the unique entity identifier for our beta test were generated in our summary reports. CONCLUSIONS: This system harnesses insights into privacy and data sharing to avoid regulatory and legal hurdles to rapid adaption by entities tasked with maintaining public safety. Our pilot study demonstrated feasibility and ease of use. Refinements based on feedback from early adapters included release of a Spanish language version. These systems provide technological advances to complement the traditional contact tracing and digital tracing applications being implemented to limit SARS-CoV-2 transmission during reopening.


Subject(s)
Commerce/organization & administration , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Public Health Surveillance/methods , Safety , COVID-19 , Contact Tracing/economics , Coronavirus Infections/epidemiology , Feasibility Studies , Humans , Pilot Projects , Pneumonia, Viral/epidemiology , Privacy , Symptom Assessment , United States/epidemiology
4.
Haematologica ; 97(1): 64-72, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21993678

ABSTRACT

BACKGROUND: Multiple myeloma, a malignancy of the antibody-secreting plasma cells, remains incurable by current therapy. However, the proteasome inhibitor bortezomib and other new drugs are revolutionizing its treatment. It remains unclear why myelomas are peculiarly sensitive to bortezomib, or what causes primary or acquired resistance. The 'unfolded protein response' is necessary for folding and assembly of immunoglobulin chains in both normal and malignant plasma cells, as well as for the disposal of incorrectly folded or unpaired chains via the ubiquitin-proteasome pathway. We tested the hypothesis that levels of transcription factor XBP-1, a major regulator of the unfolded protein response, predict response to bortezomib. DESIGN AND METHODS: Expression of XBP-1 and other regulators of the unfolded protein response were measured in myeloma and other cancer cell lines and two cohorts of patients with refractory myeloma and correlated with sensitivity/response to bortezomib. Bortezomib-resistant myeloma cell lines were derived and the effects on expression of unfolded protein response regulators, immunoglobulin secretion, proteasome activity and cross-resistance to cytotoxic drugs and tunicamycin determined. The consequences of manipulation of XBP-1 levels for sensitivity to bortezomib were tested. RESULTS: Low XBP-1 levels predicted poor response to bortezomib, both in vitro and in myeloma patients. Moreover, myeloma cell lines selected for resistance to bortezomib had down-regulated XBP-1 and immunoglobulin secretion. Expression of ATF6, another regulator of the unfolded protein response, also correlated with bortezomib sensitivity. Direct manipulation of XBP-1 levels had only modest effects on sensitivity to bortezomib, suggesting it is a surrogate marker of response to bortezomib rather than a target itself. CONCLUSIONS: The unfolded protein response may be a relevant target pathway for proteasome inhibitors in the treatment of myeloma and its regulator XBP-1 is a potential response marker. (The BIR study was registered with Australian Clinical Trial Registry Number 12605000770662).


Subject(s)
Antineoplastic Agents , Boronic Acids/therapeutic use , DNA-Binding Proteins/genetics , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Proteasome Inhibitors , Pyrazines/therapeutic use , Transcription Factors/genetics , Activating Transcription Factor 6/metabolism , Adult , Aged , Bortezomib , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm/genetics , Female , HEK293 Cells , HeLa Cells , Humans , Immunoglobulins/biosynthesis , Jurkat Cells , Male , Middle Aged , RNA Splicing , RNA, Messenger/genetics , Regulatory Factor X Transcription Factors , Transcription Factors/metabolism , Treatment Outcome , Unfolded Protein Response/drug effects , Unfolded Protein Response/genetics , X-Box Binding Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...