Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Nature ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811738

ABSTRACT

Infections caused by Gram-negative pathogens are increasingly prevalent and are typically treated with broad-spectrum antibiotics, resulting in disruption of the gut microbiome and susceptibility to secondary infections1-3. There is a critical need for antibiotics that are selective both for Gram-negative bacteria over Gram-positive bacteria, as well as for pathogenic bacteria over commensal bacteria. Here we report the design and discovery of lolamicin, a Gram-negative-specific antibiotic targeting the lipoprotein transport system. Lolamicin has activity against a panel of more than 130 multidrug-resistant clinical isolates, shows efficacy in multiple mouse models of acute pneumonia and septicaemia infection, and spares the gut microbiome in mice, preventing secondary infection with Clostridioides difficile. The selective killing of pathogenic Gram-negative bacteria by lolamicin is a consequence of low sequence homology for the target in pathogenic bacteria versus commensals; this doubly selective strategy can be a blueprint for the development of other microbiome-sparing antibiotics.

2.
Microbiol Spectr ; 12(3): e0305023, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38305162

ABSTRACT

Competence development in Streptococcus pneumoniae (pneumococcus) is tightly intertwined with virulence. In addition to genes encoding genetic transformation machinery, the competence regulon also regulates the expression of allolytic factors, bacteriocins, and cytotoxins. Pneumococcal competence system has been extensively interrogated in vitro where the short transient competent state upregulates the expression of three distinct phases of "early," "late," and "delayed" genes. Recently, we have demonstrated that the pneumococcal competent state develops naturally in mouse models of pneumonia-derived sepsis. To unravel the underlying adaptive mechanisms driving the development of the competent state, we conducted a time-resolved transcriptomic analysis guided by the spatiotemporal live in vivo imaging system of competence induction during pneumonia-derived sepsis. Mouse lungs infected by the serotype 2 strain D39 expressing a competent state-specific reporter gene (D39-ssbB-luc) were subjected to RNA sequencing guided by monitoring the competence development at 0, 12, 24, and, at the moribund state, >40 hours post-infection (hpi). Transcriptomic analysis revealed that the competence-specific gene expression patterns in vivo were distinct from those under in vitro conditions. There was significant upregulation of early, late, and some delayed phase competence-specific genes as early as 12 hpi, suggesting that the pneumococcal competence regulon is important for adaptation to the lung environment. Additionally, members of the histidine triad (pht) gene family were sharply upregulated at 12 hpi followed by a steep decline throughout the rest of the infection cycle, suggesting that Pht proteins participate in the early adaptation to the lung environment. Further analysis revealed that Pht proteins execute a metal ion-dependent regulatory role in competence induction.IMPORTANCEThe induction of pneumococcal competence for genetic transformation has been extensively studied in vitro but poorly understood during lung infection. We utilized a combination of live imaging and RNA sequencing to monitor the development of a competent state during acute pneumonia. Upregulation of competence-specific genes was observed as early as 12 hour post-infection, suggesting that the pneumococcal competence regulon plays an important role in adapting pneumococcus to the stressful lung environment. Among others, we report novel finding that the pneumococcal histidine triad (pht) family of genes participates in the adaptation to the lung environment and regulates pneumococcal competence induction.


Subject(s)
Pneumonia , Sepsis , Animals , Mice , Streptococcus pneumoniae/metabolism , Histidine/genetics , Histidine/metabolism , Bacterial Proteins/metabolism , Sequence Analysis, RNA
3.
ACS Infect Dis ; 10(2): 453-466, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38241613

ABSTRACT

Modern medicine continues to struggle against antibiotic-resistant bacterial pathogens. Among the pathogens of critical concerns are the multidrug-resistant (MDR) Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae. These pathogens are major causes of nosocomial infections among immunocompromised individuals, involving major organs such as lung, skin, spleen, kidney, liver, and bloodstream. Therefore, novel approaches are direly needed. Recently, we developed an amphiphilic dendrimer DDC18-8A exhibiting high antibacterial and antibiofilm efficacy in vitro. DDC18-8A is composed of a long hydrophobic alkyl chain and a small hydrophilic poly(amidoamine) dendron bearing amine terminals, exerting its antibacterial activity by attaching and inserting itself into bacterial membranes to trigger cell lysis. Here, we examined the pharmacokinetics and in vivo toxicity as well as the antibacterial efficacy of DDC18-8A in mouse models of human infectious diseases. Remarkably, DDC18-8A significantly reduced the bacterial burden in mouse models of acute pneumonia and bacteremia by P. aeruginosa, methicillin-resistant S. aureus (MRSA), and carbapenem-resistant K. pneumoniae and neutropenic soft tissue infection by P. aeruginosa and MRSA. Most importantly, DDC18-8A outperformed pathogen-specific antibiotics against all three pathogens by achieving a similar bacterial clearance at 10-fold lower therapeutic concentrations. In addition, it showed superior stability and biodistribution in vivo, with excellent safety profiles yet without any observable abnormalities in histopathological analysis of major organs, blood serum biochemistry, and hematology. Collectively, we provide strong evidence that DDC18-8A is a promising alternative to the currently prescribed antibiotics in addressing challenges associated with nosocomial infections by MDR pathogens.


Subject(s)
Communicable Diseases , Cross Infection , Dendrimers , Methicillin-Resistant Staphylococcus aureus , Mice , Animals , Humans , Dendrimers/pharmacology , Tissue Distribution , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Communicable Diseases/drug therapy , Klebsiella pneumoniae , Cross Infection/drug therapy
4.
Hepatology ; 79(4): 882-897, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-36999536

ABSTRACT

BACKGROUND AND AIMS: NASH, characterized by inflammation and fibrosis, is emerging as a leading etiology of HCC. Lipidomics analyses in the liver have shown that the levels of polyunsaturated phosphatidylcholine (PC) are decreased in patients with NASH, but the roles of membrane PC composition in the pathogenesis of NASH have not been investigated. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), a phospholipid (PL) remodeling enzyme that produces polyunsaturated PLs, is a major determinant of membrane PC content in the liver. APPROACH AND RESULTS: The expression of LPCAT3 and the correlation between its expression and NASH severity were analyzed in human patient samples. We examined the effect of Lpcat3 deficiency on NASH progression using Lpcat3 liver-specific knockout (LKO) mice. RNA sequencing, lipidomics, and metabolomics were performed in liver samples. Primary hepatocytes and hepatic cell lines were used for in vitro analyses. We showed that LPCAT3 was dramatically suppressed in human NASH livers, and its expression was inversely correlated with NAFLD activity score and fibrosis stage. Loss of Lpcat3 in mouse liver promotes both spontaneous and diet-induced NASH/HCC. Mechanistically, Lpcat3 deficiency enhances reactive oxygen species production due to impaired mitochondrial homeostasis. Loss of Lpcat3 increases inner mitochondrial membrane PL saturation and elevates stress-induced autophagy, resulting in reduced mitochondrial content and increased fragmentation. Furthermore, overexpression of Lpcat3 in the liver ameliorates inflammation and fibrosis of NASH. CONCLUSIONS: These results demonstrate that membrane PL composition modulates the progression of NASH and that manipulating LPCAT3 expression could be an effective therapeutic for NASH.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Phospholipids , Inflammation , Fibrosis , 1-Acylglycerophosphocholine O-Acyltransferase
5.
Cell Mol Gastroenterol Hepatol ; 17(2): 292-308.e1, 2024.
Article in English | MEDLINE | ID: mdl-37820788

ABSTRACT

BACKGROUND & AIMS: Metabolic reprogramming is essential for the activation and functions of macrophages, including bacterial killing and cytokine production. Bromodomain-containing protein 4 (BRD4) has emerged as a critical regulator of innate immune response. However, the potential role of BRD4 in the metabolic reprogramming of macrophage activation upon Helicobacter pylori infection remains unclear. METHODS: Bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Brd4-myeloid deletion conditional knockout (Brd4-CKO) mice were infected with H pylori. RNA sequencing was performed to evaluate the differential gene expression between WT and Brd4-deficient BMDMs upon infection. An in vivo model of H pylori infection using WT and Brd4-CKO mice was used to confirm the role of BRD4 in innate immune response to infection. RESULTS: Depletion of Brd4 in BMDMs showed impaired H pylori-induced glycolysis. In addition, H pylori-induced expression of glycolytic genes, including Slc2a1 and Hk2, was decreased in Brd4-deficient BMDMs. BRD4 was recruited to the promoters of Slc2a1 and Hk2 via hypoxia-inducible factor-1α, facilitating their expression. BRD4-mediated glycolysis stabilized H pylori-induced nitric oxide synthase (Nos2) messenger RNA to produce nitric oxide. The NO-mediated killing of H pylori decreased in Brd4-deficient BMDMs, which was rescued by pyruvate. Furthermore, Brd4-CKO mice infected with H pylori showed reduced gastric inflammation and increased H pylori colonization with reduced inducible NO synthase expression in gastric macrophages. CONCLUSIONS: Our study identified BRD4 as a key regulator of hypoxia-inducible factor-1α-dependent glycolysis and macrophage activation. Furthermore, we show a novel regulatory role of BRD4 in innate immunity through glycolysis to stabilize Nos2 messenger RNA for NO production to eliminate H pylori infection.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Animals , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Helicobacter Infections/microbiology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Helicobacter pylori/metabolism , Macrophages/metabolism , Nitric Oxide Synthase/metabolism , RNA, Messenger/metabolism , Glycolysis , Nitric Oxide Synthase Type II/metabolism
6.
Antimicrob Agents Chemother ; 67(11): e0057423, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37819119

ABSTRACT

Indiscriminate use of antibiotics has imposed a selective pressure for the rapid rise in bacterial resistance, creating an urgent need for novel therapeutics for managing bacterial infectious diseases while counteracting bacterial resistance. Carbapenem-resistant Klebsiella pneumoniae strains have become a major challenge in modern medicine due to their ability to cause an array of severe infections. Recently, we have shown that the 20-mer random peptide mixtures are effective therapeutics against three ESKAPEE pathogens. Here, we evaluated the toxicity, biodistribution, bioavailability, and efficacy of the ultra-short palmitoylated 5-mer phenylalanine:lysine (FK5P) random peptide mixtures against multiple clinical isolates of carbapenem-resistant K. pneumoniae and K. oxytoca. We demonstrate the FK5P rapidly and effectively killed various strains of K. pneumoniae, inhibited the formation of biofilms, and disrupted mature biofilms. FK5P displayed strong toxicity profiles both in vitro and in mice, with prolonged favorable biodistribution and a long half-life. Significantly, FK5P reduced the bacterial burden in mouse models of acute pneumonia and bacteremia and increased the survival rate in a mouse model of bacteremia. Our results demonstrate that FK5P is a safe and promising therapy against Klebsiella species as well as other ESKAPEE pathogens.


Subject(s)
Bacteremia , Klebsiella Infections , Mice , Animals , Klebsiella pneumoniae , Tissue Distribution , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Carbapenems/therapeutic use , Bacteremia/drug therapy , Microbial Sensitivity Tests
7.
Proc Natl Acad Sci U S A ; 120(36): e2302342120, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37639589

ABSTRACT

Inhibition of overexpressed enzymes is among the most promising approaches for targeted cancer treatment. However, many cancer-expressed enzymes are "nonlethal," in that the inhibition of the enzymes' activity is insufficient to kill cancer cells. Conventional antibody-based therapeutics can mediate efficient treatment by targeting extracellular nonlethal targets but can hardly target intracellular enzymes. Herein, we report a cancer targeting and treatment strategy to utilize intracellular nonlethal enzymes through a combination of selective cancer stem-like cell (CSC) labeling and Click chemistry-mediated drug delivery. A de novo designed compound, AAMCHO [N-(3,4,6-triacetyl- N-azidoacetylmannosamine)-cis-2-ethyl-3-formylacrylamideglycoside], selectively labeled cancer CSCs in vitro and in vivo through enzymatic oxidation by intracellular aldehyde dehydrogenase 1A1. Notably, azide labeling is more efficient in identifying tumorigenic cell populations than endogenous markers such as CD44. A dibenzocyclooctyne (DBCO)-toxin conjugate, DBCO-MMAE (Monomethylauristatin E), could next target the labeled CSCs in vivo via bioorthogonal Click reaction to achieve excellent anticancer efficacy against a series of tumor models, including orthotopic xenograft, drug-resistant tumor, and lung metastasis with low toxicity. A 5/7 complete remission was observed after single-cycle treatment of an advanced triple-negative breast cancer xenograft (~500 mm3).


Subject(s)
Aldehyde Dehydrogenase , Antibodies , Humans , Azides , Carcinogenesis , Click Chemistry , Aldehyde Dehydrogenase 1 Family , Retinal Dehydrogenase
8.
Proc Natl Acad Sci U S A ; 120(35): e2301045120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37607229

ABSTRACT

Subverting the host immune system is a major task for any given pathogen to assure its survival and proliferation. For the opportunistic human pathogen Bacillus cereus (Bc), immune evasion enables the establishment of potent infections. In various species of the Bc group, the pleiotropic regulator PlcR and its cognate cell-cell signaling peptide PapR7 regulate virulence gene expression in response to fluctuations in population density, i.e., a quorum-sensing (QS) system. However, how QS exerts its effects during infections and whether PlcR confers the immune evading ability remain unclear. Herein, we report how interception of the QS communication in Bc obliterates the ability to affect the host immune system. Here, we designed a peptide-based QS inhibitor that suppresses PlcR-dependent virulence factor expression and attenuates Bc infectivity in mouse models. We demonstrate that the QS peptidic inhibitor blocks host immune system-mediated eradication by reducing the expression of PlcR-regulated major toxins similarly to the profile that was observed for isogenic strains. Our findings provide evidence that Bc infectivity is regulated by QS circuit-mediated destruction of host immunity, thus reveal a interesting strategy to limit Bc virulence and enhance host defense. This peptidic quorum-quenching agent constitutes a readily accessible chemical tool for studying how other pathogen QS systems modulate host immunity and forms a basis for development of anti-infective therapeutics.


Subject(s)
Bacillus , Quorum Sensing , Humans , Animals , Mice , Cell Communication , Bacillus cereus , Immune System , Peptides/pharmacology
9.
Sci Adv ; 9(18): eadg7397, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37146142

ABSTRACT

The prevalence of orthopedic implants is increasing with an aging population. These patients are vulnerable to risks from periprosthetic infections and instrument failures. Here, we present a dual-functional smart polymer foil coating compatible with commercial orthopedic implants to address both septic and aseptic failures. Its outer surface features optimum bioinspired mechano-bactericidal nanostructures, capable of killing a wide spectrum of attached pathogens through a physical process to reduce the risk of bacterial infection, without directly releasing any chemicals or harming mammalian cells. On its inner surface in contact with the implant, an array of strain gauges with multiplexing transistors, built on single-crystalline silicon nanomembranes, is incorporated to map the strain experienced by the implant with high sensitivity and spatial resolution, providing information about bone-implant biomechanics for early diagnosis to minimize the probability of catastrophic instrument failures. Their multimodal functionalities, performance, biocompatibility, and stability are authenticated in sheep posterolateral fusion model and rodent implant infection model.


Subject(s)
Anti-Infective Agents , Nanostructures , Animals , Sheep , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Prostheses and Implants/adverse effects , Bone and Bones , Nanostructures/chemistry , Mammals
11.
ACS Cent Sci ; 8(8): 1145-1158, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36032774

ABSTRACT

Genomic studies and experiments with permeability-deficient strains have revealed a variety of biological targets that can be engaged to kill Gram-negative bacteria. However, the formidable outer membrane and promiscuous efflux pumps of these pathogens prevent many candidate antibiotics from reaching these targets. One such promising target is the enzyme FabI, which catalyzes the rate-determining step in bacterial fatty acid biosynthesis. Notably, FabI inhibitors have advanced to clinical trials for Staphylococcus aureus infections but not for infections caused by Gram-negative bacteria. Here, we synthesize a suite of FabI inhibitors whose structures fit permeation rules for Gram-negative bacteria and leverage activity against a challenging panel of Gram-negative clinical isolates as a filter for advancement. The compound to emerge, called fabimycin, has impressive activity against >200 clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii, and does not kill commensal bacteria. X-ray structures of fabimycin in complex with FabI provide molecular insights into the inhibition. Fabimycin demonstrates activity in multiple mouse models of infection caused by Gram-negative bacteria, including a challenging urinary tract infection model. Fabimycin has translational promise, and its discovery provides additional evidence that antibiotics can be systematically modified to accumulate in Gram-negative bacteria and kill these problematic pathogens.

12.
ACS Pharmacol Transl Sci ; 5(5): 299-305, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35592433

ABSTRACT

The competence regulon of Streptococcus pneumoniae (pneumococcus) is a quorum-sensing circuitry that regulates the ability of this pathogen to acquire antibiotic resistance or perform serotype switching, leading to vaccine-escape serotypes, via horizontal gene transfer, as well as initiate virulence. Induction of the competence regulon is centered on binding of the competence-stimulating peptide (CSP) to its cognate receptor, ComD. We have recently synthesized multiple dominant-negative peptide analogs capable of inhibiting competence induction and virulence in S. pneumoniae. However, the pharmacodynamics and safety profiles of these peptide drug leads have not been characterized. Therefore, in this study, we compared the biostability of cyanine-7.5-labeled wild-type CSPs versus dominant-negative peptide analogs (dnCSPs) spatiotemporally by using an IVIS Spectrum in vivo imaging system. Moreover, in vitro cytotoxicity and in vivo toxicity were evaluated. We conclude that our best peptide analog, CSP1-E1A-cyc(Dap6E10), is an attractive therapeutic agent against pneumococcal infection with superior safety and pharmacokinetics profiles.

13.
J Med Chem ; 65(9): 6826-6839, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35452241

ABSTRACT

Streptococcus pneumoniae (pneumococcus) is a prevalent human pathogen that utilizes the competence regulon quorum sensing circuitry to acquire antibiotic resistance and initiate its attack on the human host. Therefore, targeting the competence regulon can be applied as an anti-infective approach with minimal pressure for resistance development. Herein, we report the construction of a library of urea-bridged cyclic dominant-negative competence-stimulating peptide (dnCSP) derivatives and their evaluation as competitive inhibitors of the competence regulon. Our results reveal the first pneumococcus dual-action CSPs that inhibit the group 1 pneumococcus competence regulon while activating the group 2 pneumococcus competence regulon. Structural analysis indicates that the urea-bridge cyclization stabilizes the bioactive α-helix conformation, while in vivo studies using a mouse model of infection exhibit that the lead dual-action dnCSP, CSP1-E1A-cyc(Dab6Dab10), attenuates group 1-mediated mortality without significantly reducing the bacterial burden. Overall, our results pave the way for developing novel therapeutics against this notorious pathogen.


Subject(s)
Regulon , Streptococcus pneumoniae , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Peptides/chemistry , Peptides, Cyclic/pharmacology , Urea/pharmacology
14.
Antibiotics (Basel) ; 11(3)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35326876

ABSTRACT

Antibiotic resistance is one of the greatest crises in human medicine. Increased incidents of antibiotic resistance are linked to clinical overuse and overreliance on antibiotics. Among the ESKAPE pathogens, Acinetobacter baumannii, especially carbapenem-resistant isolates, has emerged as a significant threat in the context of blood, urinary tract, lung, and wound infections. Therefore, new approaches that limit the emergence of antibiotic resistant A. baumannii are urgently needed. Recently, we have shown that random peptide mixtures (RPMs) are an attractive alternative class of drugs to antibiotics with strong safety and pharmacokinetic profiles. RPMs are antimicrobial peptide mixtures produced by incorporating two amino acids at each coupling step, rendering them extremely diverse but still defined in their overall composition, chain length, and stereochemistry. The extreme diversity of RPMs may prevent bacteria from evolving resistance rapidly. Here, we demonstrated that RPMs rapidly and efficiently kill different strains of A. baumannii, inhibit biofilm formation, and disrupt mature biofilms. Importantly, RPMs attenuated bacterial burden in mouse models of acute pneumonia and soft tissue infection and significantly reduced mouse mortality during sepsis. Collectively, our results demonstrate RPMs have the potential to be used as powerful therapeutics against antibiotic-resistant A. baumannii.

15.
Virulence ; 12(1): 1469-1507, 2021 12.
Article in English | MEDLINE | ID: mdl-34180343

ABSTRACT

Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa/pathogenicity , Virulence , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Humans , Persistent Infection , Pseudomonas Infections/physiopathology , Virulence Factors
16.
ACS Infect Dis ; 7(3): 672-680, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33650856

ABSTRACT

Antibiotic resistance is a daunting challenge in modern medicine, and novel approaches that minimize the emergence of resistant pathogens are desperately needed. Antimicrobial peptides are newer therapeutics that attempt to do this; however, they fall short because of low to moderate antimicrobial activity, low protease stability, susceptibility to resistance development, and high cost of production. The recently developed random peptide mixtures (RPMs) are promising alternatives. RPMs are synthesized by incorporating a defined proportion of two amino acids at each coupling step rather than just one, making them highly variable but still defined in their overall composition, chain length, and stereochemistry. Because RPMs have extreme diversity, it is unlikely that bacteria would be capable of rapidly evolving resistance. However, their efficacy against pathogens in animal models of human infectious diseases remained uncharacterized. Here, we demonstrated that RPMs have strong safety and pharmacokinetic profiles. RPMs rapidly killed both Pseudomonas aeruginosa and Staphylococcus aureus efficiently and disrupted preformed biofilms by both pathogens. Importantly, RPMs were efficacious against both pathogens in mouse models of bacteremia and acute pneumonia. Our results demonstrate that RPMs are potent broad-spectrum therapeutics against antibiotic-resistant pathogens.


Subject(s)
Anti-Infective Agents , Bacteremia , Methicillin-Resistant Staphylococcus aureus , Pneumonia , Animals , Bacteremia/drug therapy , Mice , Peptides , Pseudomonas aeruginosa
17.
ACS Infect Dis ; 7(2): 493-505, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33522241

ABSTRACT

Fusidic acid (FA) is a potent steroidal antibiotic that has been used in Europe for more than 60 years to treat a variety of infections caused by Gram-positive pathogens. Despite its clinical success, FA requires significantly elevated dosing (3 g on the first day, 1.2 g on subsequent days) to minimize resistance, as FA displays a high resistance frequency, and a large shift in minimum inhibitory concentration is observed for resistant bacteria. Despite efforts to improve on these aspects, all previously constructed derivatives of FA have worse antibacterial activity against Gram-positive bacteria than the parent natural product. Here, we report the creation of a novel FA analogue that has equivalent potency against clinical isolates of Staphylococcus aureus (S. aureus) and Enterococcus faecium (E. faecium) as well as an improved resistance profile in vitro when compared to FA. Importantly, this new compound displays efficacy against an FA-resistant strain of S. aureus in a soft-tissue murine infection model. This work delineates the structural features of FA necessary for potent antibiotic activity and demonstrates that the resistance profile can be improved for this scaffold and target.


Subject(s)
Anti-Bacterial Agents , Fusidic Acid , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Fusidic Acid/pharmacology , Mice , Microbial Sensitivity Tests , Staphylococcus aureus
18.
Am J Pathol ; 191(1): 108-130, 2021 01.
Article in English | MEDLINE | ID: mdl-33069717

ABSTRACT

Pulmonary mycoses are difficult to treat and detrimental to patients. Fungal infections modulate the lung immune response, induce goblet cell hyperplasia and metaplasia, and mucus hypersecretion in the airways. Excessive mucus clogs small airways and reduces pulmonary function by decreasing oxygen exchange, leading to respiratory distress. The forkhead box protein A2 (FOXA2) is a transcription factor that regulates mucus homeostasis in the airways. However, little is known whether pulmonary mycosis modulates FOXA2 function. Herein, we investigated whether Blastomyces dermatitidis and Histoplasma capsulatum-infected canine and feline lungs and airway epithelial cells could serve as higher animal models to examine the relationships between fungal pneumonia and FOXA2-regulated airway mucus homeostasis. The results indicate that fungal infection down-regulated FOXA2 expression in airway epithelial cells, with concomitant overexpression of mucin 5AC (MUC5AC) and mucin 5B (MUC5B) mucins. Mechanistic studies reveal that B. dermatitidis infection, as well as ß-glucan exposure, activated the Dectin-1-SYK-epidermal growth factor receptor-AKT/extracellular signal-regulated kinase 1/2 signaling pathway that inhibits the expression of FOXA2, resulting in overexpression of MUC5AC and MUC5B in canine airway cells. Further understanding of the role of FOXA2 in mucus hypersecretion may lead to novel therapeutics against excessive mucus in both human and veterinary patients with pulmonary mycosis.


Subject(s)
Blastomycosis/metabolism , Histoplasmosis/metabolism , Lung Diseases, Fungal/metabolism , Mucus/metabolism , Signal Transduction/physiology , Animals , Blastomycosis/pathology , Cats , Disease Models, Animal , Dogs , ErbB Receptors/metabolism , Hepatocyte Nuclear Factor 3-beta/metabolism , Histoplasma , Histoplasmosis/pathology , Lung Diseases, Fungal/pathology , MAP Kinase Signaling System/physiology , Proto-Oncogene Proteins c-akt/metabolism , Syk Kinase/metabolism
19.
ACS Cent Sci ; 6(12): 2267-2276, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33376787

ABSTRACT

Infections by intracellular pathogens are difficult to treat because of the poor accessibility of antibiotics to the pathogens encased by host cell membranes. As such, a strategy that can improve the membrane permeability of antibiotics would significantly increase their efficiency against the intracellular pathogens. Here, we report the design of an adaptive, metaphilic cell-penetrating polypeptide (CPP)-antibiotic conjugate (VPP-G) that can effectively eradicate the intracellular bacteria both in vitro and in vivo. VPP-G was synthesized by attaching vancomycin to a highly membrane-penetrative guanidinium-functionalized metaphilic CPP. VPP-G effectively kills not only extracellular but also far more challenging intracellular pathogens, such as S. aureus, methicillin-resistant S. aureus, and vancomycin-resistant Enterococci. VPP-G enters the host cell via a unique metaphilic membrane penetration mechanism and kills intracellular bacteria through disruption of both cell wall biosynthesis and membrane integrity. This dual antimicrobial mechanism of VPP-G prevents bacteria from developing drug resistance and could also potentially kill dormant intracellular bacteria. VPP-G effectively eradicates MRSA in vivo, significantly outperforming vancomycin, which represents one of the most effective intracellular antibacterial agents reported so far. This strategy can be easily adapted to develop other conjugates against different intracellular pathogens by attaching different antibiotics to these highly membrane-penetrative metaphilic CPPs.

SELECTION OF CITATIONS
SEARCH DETAIL
...