Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Thromb Haemost ; 16(3): 571-582, 2018 03.
Article in English | MEDLINE | ID: mdl-29251812

ABSTRACT

Essentials The role of von Willebrand factor (VWF) domains in regulating platelet adhesion was studied in vivo. Multimeric VWF with spacers at the N- and C-terminus of VWF-A1 were systematically tested. N-terminal modified VWF avidly bound platelet GpIbα, causing VWD Type2B like phenotype in mice. Novel anti-D'D3 mAbs suggest that changes at the D'D3-A1 interface may be biologically relevant. SUMMARY: Background Previous ex vivo studies using truncated VWF (von Willebrand factor) suggest that domain-level molecular architecture may control platelet-GpIbα binding function. Objective We determined if this is the case with multimeric VWF in vivo. Methods Full-length human VWF ('hV') was modified with a 22-amino acid mucinous stretch at either the N-terminus of VWF-A1 to create 'hNV' or C-terminus to yield 'hCV'. This extends the physical distance between VWF-A1 and the adjacent domains by ~6 nm. Similar mucin inserts were also introduced into a human-murine chimera ('h[mA1]V') where murine-A1 replaced human-A1 in hV. This yielded 'h[mA1]NV' and 'h[mA1]CV', with N- and C-terminal inserts. The constructs were tested ex vivo and in vivo. Results Mucin insertion at the N-terminus, but not C-terminus, in both types of constructs resulted in >50-fold increase in binding to immobilized GpIbα. N-terminal insertion also resulted in greater shear-induced platelet activation, more thrombus formation on collagen, enhanced platelet accumulation and slower platelet translocation on immobilized VWF in microfluidics assays. Hydrodynamic injection-based expression of h[mA1]NV, but not h[mA1]V or h[mA1]CV, in VWF-/- mice caused profound thrombocytopenia, reduced plasma VWF concentrations, lower multimer distribution, and incessant tail bleeding that is reminiscent of von Willebrand disease type 2B. Platelet plugs were noted in the portal veins and hepatic arteries. An anti-D'D3 mAb DD3.3 that displays enhanced binding to VWF containing the N-terminal mucin insert also exhibited increased binding to wild-type VWF under shear and upon ristocetin addition. Conclusion Conformation changes at the VWF D'D3-A1 interface may be a key regulator of thrombosis in vivo. Structural features at the A1-A2 interface are likely of less significance.


Subject(s)
Blood Platelets/cytology , Platelet Adhesiveness , Platelet Function Tests , Protein Domains , von Willebrand Factor/metabolism , Animals , DNA, Complementary/metabolism , Female , HEK293 Cells , Hemostasis , Humans , Hydrodynamics , Male , Mice , Microfluidics , Mucins/chemistry , Phenotype , Platelet Activation , Protein Binding , Protein Folding , Ristocetin/chemistry , Shear Strength , Thrombocytopenia/blood , Thrombosis/metabolism
2.
Cell Death Dis ; 7(7): e2314, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27468690

ABSTRACT

Detailed understanding of the mechanistic steps underlying tumor initiation and malignant progression is critical for insights of potentially novel therapeutic modalities. Cellular reprogramming is an approach of particular interest because it can provide a means to reset the differentiation state of the cancer cells and to revert these cells to a state of non-malignancy. Here, we investigated the relationship between cellular differentiation and malignant progression by the fusion of four independent mouse cancer cell lines from different tissues, each with differing developmental potentials, to pluripotent mouse embryonic stem (ES) cells. Fusion was accompanied by loss of differentiated properties of the four parental cancer cell lines and concomitant emergence of pluripotency, demonstrating the feasibility to reprogram the malignant and differentiative properties of cancer cells. However, the original malignant and differentiative phenotypes re-emerge upon withdrawal of the fused cells from the embryonic environment in which they were maintained. cDNA array analysis of the malignant hepatoma progression implicated a role for Foxa1, and silencing Foxa1 prevented the re-emergence of malignant and differentiation-associated gene expression. Our findings support the hypothesis that tumor progression results from deregulation of stem cells, and our approach provides a strategy to analyze possible mechanisms in the cancer initiation.


Subject(s)
Carcinogenesis/pathology , Cell Differentiation , Cellular Reprogramming , Adult , Animals , Carcinogenesis/metabolism , Cell Fusion , Cell Line, Tumor , Disease Progression , Embryonic Stem Cells/cytology , Humans , Mice, Transgenic , Phenotype , Pluripotent Stem Cells/cytology , Reproducibility of Results , Teratoma/pathology , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...