Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Cell Rep Med ; 4(8): 101133, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37586317

ABSTRACT

New York esophageal squamous cell carcinoma-1 (NY-ESO-1)-specific T cell receptor (TCR) T cell therapy is effective in tumors with NY-ESO-1 expression, but a safe and effective TCR-T cell therapeutic protocol remains to be improved. Here, we report a phase 1 investigational new drug clinical trial with TCR affinity-enhanced specific T cell therapy (TAEST16001) for targeting NY-ESO-1. Enrolled patients receive TAEST16001 cell infusion after dose-reduced lymphodepletion with cyclophosphamide (15 mg/kg/day × 3 days) combined with fludarabine (20 mg/m2/day × 3 days), and the TCR-T cells are maintained with low doses of interleukin-2 injection post-adoptive transfer. Analysis of 12 patients treated with the regimen demonstrates no treatment-related serious adverse events. The overall response rate is 41.7%. The median progression-free survival is 7.2 months, and the median duration of response is 13.1 months. The protocol of TAEST16001 cells delivers a safe and highly effective treatment for patients with advanced soft tissue sarcoma (ClinicalTrials.gov: NCT04318964).


Subject(s)
Immunotherapy, Adoptive , Sarcoma , Soft Tissue Neoplasms , Humans , HLA-A Antigens/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Sarcoma/metabolism , Soft Tissue Neoplasms/therapy , T-Lymphocytes
2.
IEEE J Transl Eng Health Med ; 11: 424-434, 2023.
Article in English | MEDLINE | ID: mdl-37435542

ABSTRACT

OBJECTIVE: Infectious diseases are global health challenge, impacted the communities worldwide particularly in the midst of COVID-19 pandemic. The need of rapid and accurate automated systems for detecting pathogens of concern has always been critical. Ideally, such systems shall detect a large panel of pathogens simultaneously regardless of well-equipped facilities and highly trained operators, thus realizing on-site diagnosis for frontline healthcare providers and in critical locations such as borders and airports. METHODS & RESULTS: Avalon Automated Multiplex System, AAMST, is developed to automate a series of biochemistry protocols to detect nucleic acid sequences from multiple pathogens in one test. Automated processes include isolation of nucleic acids from unprocessed samples, reverse transcription and two rounds of amplifications. All procedures are carried out in a microfluidic cartridge performed by a desktop analyzer. The system was validated with reference controls and showed good agreement with their laboratory counterparts. In total 63 clinical samples, 13 positives including those from COVID-19 patients and 50 negative cases were detected, consistent with clinical diagnosis using conventional laboratory methods. CONCLUSIONS: The proposed system has demonstrated promising utility. It would benefit the screening and diagnosis of COVID-19 and other infectious diseases in a simple, rapid and accurate fashion. Clinical and Translational Impact Statement- A rapid and multiplex diagnostic system proposed in this work can clinically help to control spread of COVID-19 and other infectious agents as it can provide timely diagnosis, isolation and treatment to patients. Using the system at remoted clinical sites can facilitate early clinical management and surveillance.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Pandemics , Airports , Health Personnel , Laboratories
3.
Spine Deform ; 11(6): 1347-1354, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37493936

ABSTRACT

PURPOSE: To assess the reliability and validity of a handheld scanner (SpineScan3D) for trunk rotation measurement in adolescent idiopathic scoliosis (AIS) subjects, as compared with Scoliometer. METHODS: This was a cross-sectional study with AIS subjects recruited. Biplanar spine radiographs were performed using an EOS imaging system with coronal Cobb angle (CCA) determined. The angle of trunk rotation (ATR) was measured using Scoliometer. SpineScan3D was employed to assess the axial rotation of subjects' back at forward bending, recorded as surface tilt angle (STA). Intra- and inter-examiner repeats were conducted to evaluate the reliability of SpineScan3D. RESULTS: 97 AIS patients were recruited. Intra- and inter-examiner reliability of STA measures were good to excellent in major thoracic and lumbar curves (p < 0.001). A strong correlation was found between STA and ATR measures in both curve types (p < 0.001) with a standard error of the ATR estimate of between 1 and 2 degrees from linear regression models (R squared: 0.8-0.9, p < 0.001). A similar correlation with CCA was found for STA and ATR measures (r: 0.5-0.6, p < 0.002), which also demonstrated a similar sensitivity (72%-74%) and specificity (62%-77%) for diagnosing moderate to severe curves. CONCLUSION: SpineScan3D is a handheld surface scanner with a potential of wide applications in subjects with AIS. The current study indicated that SpineScan3D is reliable and valid for measuring trunk rotation in AIS subjects, comparable to Scoliometer. Further studies are planned to investigate its measurements in coronal and sagittal planes and the potential of this device as a screening and monitoring tool. TRIAL REGISTRATION NUMBER (DATE OF REGISTRATION): HKUCTR-2288 (06 Dec 2017). LEVEL OF EVIDENCE: Level III.

4.
Front Med (Lausanne) ; 9: 928468, 2022.
Article in English | MEDLINE | ID: mdl-35979216

ABSTRACT

Background: Key findings from the World Health Organization Expert Meeting on Evaluation of Traditional Chinese Medicine (TCM) in treating coronavirus disease 2019 (COVID-19) reported that TCMs are beneficial, particularly for mild-to-moderate cases. The efficacy of Jinhua Qinggan granules (JHQG) in COVID-19 patients with mild symptoms has yet to be clearly defined. Methods: We conducted a phase 2/3, double-blind, randomized, placebo-controlled trial to evaluate the efficacy and safety of treatment with JHQG in mild, non-hospitalized, laboratory-confirmed COVID-19 patients. Participants were randomly assigned to receive 5 g/sacket of JHQG or placebo granules orally thrice daily for 10 days. The primary outcomes were the improvement in clinical symptoms and a proportion tested negative on viral polymerase chain reaction (PCR) after treatment. Secondary outcomes were the time to recover from clinical symptoms and changes in white blood cells (WBC) and acute phase reactants (C-reactive protein (CRP) and ferritin) on the 10th day after treatment initiation. Results: A total of 300 patients were randomly assigned to receive JHQG (150 patients) and placebo (150 patients). Baseline characteristics were similar in the two groups. In the modified intention-to-treat analysis, JHQG showed greater clinical efficacy (82.67%) on the 10th day of the trial compared with the placebo group (10.74%; rate difference: 71.93%; 95% CI 64.09-79.76). The proportion of patients with a negative PCR after treatment was comparable (rate difference: -4.67%; 95% CI -15.76 to 6.42). In contrast, all changes in WBC, ferritin, and CRP levels showed a statistically significant decline in JHQG (P ≤ 0.044) after treatment, but not the latter in placebo (P = 0.077). The median time to recovery of COVID-19-related symptoms including cough, sputum, sore throat, dyspnea, headache, nasal obstruction, fatigue, and myalgia was shorter in the JHQG group compared to the placebo group (P < 0.001 for all). Three patients experienced mild-to-moderate adverse events (AEs) duringthe treatment period in the JHQG group. Findings were similar between the modified intention-to-treat and the per-protocol analysis that included only patients who reported 100% adherence to the assigned regimen. Conclusion: Based on the time to recover from the COVID-19-related symptoms and AEs, it is concluded that JHQG is a safe and effective TCM for symptomatic relief of patients with mild COVID-19. A symptomatic improvement in the JHQG group patients was observed and JHQG use would have important public health implications in such patients. Clinical Trial Registration: The Trial was prospectively registered on www.clinicaltrials.gov with registration number: NCT04723524.

5.
J Med Chem ; 65(1): 191-216, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34928144

ABSTRACT

Targeted concurrent inhibition of intestinal drug efflux transporter P-glycoprotein (P-gp) and drug metabolizing enzyme cytochrome P450 3A4 (CYP3A4) is a promising approach to improve oral bioavailability of their common substrates such as docetaxel, while avoiding side effects arising from their pan inhibitions. Herein, we report the discovery and characterization of potent small molecule inhibitors of P-gp and CYP3A4 with encequidar (minimally absorbed P-gp inhibitor) as a starting point for optimization. To aid in the design of these dual inhibitors, we solved the high-resolution cryo-EM structure of encequidar bound to human P-gp. The structure guided us to prudently decorate the encequidar scaffold with CYP3A4 pharmacophores, leading to the identification of several analogues with dual potency against P-gp and CYP3A4. In vivo, dual P-gp and CYP3A4 inhibitor 3a improved the oral absorption of docetaxel by 3-fold as compared to vehicle, while 3a itself remained poorly absorbed.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Cryoelectron Microscopy/methods , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Cytochrome P-450 CYP3A/chemistry , Drug Design , Drug Discovery , Enzyme Inhibitors/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Cytochrome P-450 CYP3A Inhibitors/chemistry , Docetaxel/administration & dosage , Enzyme Inhibitors/chemistry , Humans , Mice
6.
Curr Alzheimer Res ; 18(1): 67-79, 2021.
Article in English | MEDLINE | ID: mdl-33761857

ABSTRACT

BACKGROUND: APOE ε4 is the best-known risk factor for late-onset alzheimer's disease (AD). Population studies have demonstrated a relatively low prevalence of APOE ε4 among Chinese population, implying additional risk factors that are Chinese-specific may exist. Apart from - alleles, genetic variation profile along the full-length APOE has rarely been investigated. OBJECTIVE: In this study, we filled this gap by comprehensively determining all genetic variations in APOE and investigated their potential associations with late-onset AD and mild cognitive impairment (MCI) in southern Chinese. METHODS: Two hundred and fifty-seven southern Chinese participants were recruited, of whom 69 were AD patients, 83 had MCI, and 105 were normal controls. Full-length APOE from promoter to 3'UTR regions were sequenced. Genetic variants were identified and compared among the three groups. RESULTS: While APOE ε4 was more significantly found in AD patients, the prevalence of APOE ε4 in southern Chinese AD patients was the lowest when compared to other areas of China and nearby regions, as well as other countries worldwide. We further identified 13 rare non-singleton variants in APOE. Significantly more AD patients carried any of the rare non-singleton variants than MCI and normal subjects. Such difference was observed in the non-carriers of ε4-allele only. Among the identified rare variants, the potential functional impact was predicted for rs532314089, rs553874843, rs533904656 and rs370594287. CONCLUSION: Our study suggests an ethnic difference in genetic risk composition of AD in southern Chinese. Rare variants on APOE are a potential candidate for AD risk stratification biomarker in addition to APOE-ε4.

7.
J Med Chem ; 64(7): 3677-3693, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33729781

ABSTRACT

Many chemotherapeutics, such as paclitaxel, are administered intravenously as they suffer from poor oral bioavailability, partly because of efflux mechanism of P-glycoprotein in the intestinal epithelium. To date, no drug has been approved by the U.S. Food and Drug Administration (FDA) that selectively blocks this efflux pump. We sought to identify a compound that selectively inhibits P-glycoprotein in the gastrointestinal mucosa with poor oral bioavailability, thus eliminating the issues such as bone marrow toxicity associated with systemic inhibition of P-glycoprotein. Here, we describe the discovery of highly potent, selective, and poorly orally bioavailable P-glycoprotein inhibitor 14 (encequidar). Clinically, encequidar was found to be well tolerated and minimally absorbed; and importantly, it enabled the oral delivery of paclitaxel.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Tetrazoles/pharmacology , Administration, Oral , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacology , Drug Discovery , Humans , Intestinal Mucosa/drug effects , Molecular Structure , Paclitaxel/administration & dosage , Paclitaxel/pharmacology , Structure-Activity Relationship , Tetrazoles/chemical synthesis , Tetrazoles/metabolism
8.
Eur J Med Chem ; 191: 112118, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32113126

ABSTRACT

Highly expressed in cancer 1 (Hec1) plays an essential role in mitosis and is correlated with cancer formation, progression, and survival. Phosphorylation of Hec1 by Nek2 kinase is essential for its mitotic function, thus any disruption of Hec1/Nek2 protein-protein interaction has potential for cancer therapy. We have developed T-1101 tosylate (9j tosylate, 9j formerly known as TAI-95), optimized from 4-aryl-N-pyridinylcarbonyl-2-aminothiazole of scaffold 9 by introducing various C-4' substituents to enhance potency and water solubility, as a first-in-class oral clinical candidate for Hec1 inhibition with potential for cancer therapy. T-1101 has good oral absorption, along with potent in vitro antiproliferative activity (IC50: 14.8-21.5 nM). It can achieve high concentrations in Huh-7 and MDA-MB-231 tumor tissues, and showed promise in antitumor activity in mice bearing human tumor xenografts of liver cancer (Huh-7), as well as of breast cancer (BT474, MDA-MB-231, and MCF7) with oral administration. Oral co-administration of T-1101 halved the dose of sorafenib (25 mg/kg to 12.5 mg/kg) required to exhibit comparable in vivo activity towards Huh-7 xenografts. Cellular events resulting from Hec1/Nek2 inhibition with T-1101 treatment include Nek2 degradation, chromosomal misalignment, and apoptotic cell death. A combination of T-1101 with either of doxorubicin, paclitaxel, and topotecan in select cancer cells also resulted in synergistic effects. Inactivity of T-1101 on non-cancerous cells, a panel of kinases, and hERG demonstrates cancer specificity, target specificity, and cardiac safety, respectively. Subsequent salt screening showed that T-1101 tosylate has good oral AUC (62.5 µM·h), bioavailability (F = 77.4%), and thermal stability. T-1101 tosylate is currently in phase I clinical trials as an orally administered drug for cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Cytoskeletal Proteins/antagonists & inhibitors , Drug Discovery , NIMA-Related Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cytoskeletal Proteins/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , K562 Cells , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Mice , Mice, SCID , Molecular Docking Simulation , Molecular Structure , NIMA-Related Kinases/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Tissue Distribution
9.
J Neurooncol ; 140(3): 519-527, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30238350

ABSTRACT

PURPOSE: A major challenge to developing new therapies for patients with malignant brain tumors is that relatively few small molecule anticancer drugs penetrate the blood-brain barrier (BBB) well enough to provide therapeutically effective concentrations in brain tissue before drug exposure in non-CNS tissues results in unacceptable toxicity. METHODS: KX2-361, a member of a novel family of compounds with Src-kinase and tubulin polymerization inhibitory activity, demonstrates good oral bioavailability and readily crosses the BBB in mice. The objective of this study was to investigate the activity of KX2-361 against human and murine glioma cells and assess its therapeutic effect in a syngeneic orthotopic model of glioblastoma. RESULTS: In addition to reducing the level of Src autophosphorylation in the GL261 murine glioblastoma cell line, KX2-361 binds directly to tubulin and disrupts microtubule architecture in glioma cells maintained in culture. CONCLUSIONS: The drug is active in vivo against orthotopic GL261 gliomas in syngeneic C57BL/6 mice. Long term survival is not observed in mice lacking an adaptive immune system, indicating that KX2-361 works in concert with the host immune system to control tumor growth and promote long-term survival in the GL261 glioma model.


Subject(s)
Acetamides/administration & dosage , Antineoplastic Agents/administration & dosage , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Morpholines/administration & dosage , Pyridines/administration & dosage , Tubulin Modulators/administration & dosage , src-Family Kinases/antagonists & inhibitors , Animals , Apoptosis , Blood-Brain Barrier/metabolism , Brain Neoplasms/drug therapy , Cell Cycle Checkpoints , Cell Line, Tumor , Disease Models, Animal , Glioblastoma/drug therapy , Humans , Mice, Inbred C57BL , Phosphorylation , Protein Kinase Inhibitors/administration & dosage
10.
J Med Chem ; 61(11): 4704-4719, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29617135

ABSTRACT

The discovery of potent, peptide site directed, tyrosine kinase inhibitors has remained an elusive goal. Herein we describe the discovery of two such clinical candidates that inhibit the tyrosine kinase Src. Compound 1 is a phase 3 clinical trial candidate that is likely to provide a first in class topical treatment for actinic keratosis (AK) with good efficacy and dramatically less toxicity compared to existing standard therapy. Compound 2 is a phase 1 clinical trial candidate that is likely to provide a first in class treatment of malignant glioblastoma and induces 30% long-term complete tumor remission in animal models. The discovery strategy for these compounds iteratively utilized molecular modeling, along with the synthesis and testing of increasingly elaborated proof of concept compounds, until the final clinical candidates were arrived at. This was followed with mechanism of action (MOA) studies that revealed tubulin polymerization inhibition as the second MOA.


Subject(s)
Acetamides/pharmacology , Drug Discovery , Morpholines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Tubulin Modulators/pharmacology , src-Family Kinases/antagonists & inhibitors , Acetamides/metabolism , Amino Acid Sequence , Catalytic Domain , Cell Line, Tumor , Humans , Molecular Docking Simulation , Morpholines/metabolism , Protein Kinase Inhibitors/metabolism , Pyridines/metabolism , Signal Transduction/drug effects , Tubulin Modulators/metabolism , src-Family Kinases/chemistry , src-Family Kinases/metabolism
11.
Sci Rep ; 8(1): 1853, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29382849

ABSTRACT

The genetic bases of many common diseases have been identified through genome-wide association studies in the past decade. However, the application of this approach on public healthcare planning has not been well established. Using Macau with population of around 650,000 as a basis, we conducted a pilot study to evaluate the feasibility of population genomic research and its potential on public health decisions. By performing genome-wide SNP genotyping of over a thousand Macau individuals, we evaluated the population genetic risk profiles of 47 non-communicable diseases and traits, as well as two traits associated with influenza infection. We found that for most of the diseases, the genetic risks of Macau population were different from those of Caucasian, but with similar profile with mainland Chinese. We also identified a panel of diseases that Macau population may have a high or elevated genetic risks. This pilot study showed that (1) population genomic study is feasible in Asian regions like Macau; (2) Macau may have different profile of population-based genetic risks than Caucasians, (3) the different prevalence of genetic risk profile indicates the importance of Asian-specific studies for Asian populations; and (4) the results generated may have an impact for going forward healthcare planning.


Subject(s)
Disease/ethnology , Disease/genetics , Genetics, Population , Precision Medicine , Public Health , Regional Health Planning/organization & administration , Adolescent , Adult , Aged , Delivery of Health Care , Feasibility Studies , Female , Genome-Wide Association Study , Humans , Macau/epidemiology , Male , Middle Aged , Pilot Projects , Risk Factors , Young Adult
12.
Sci Transl Med ; 9(409)2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28954926

ABSTRACT

Chronic hepatitis B virus (HBV) infection is a major health concern worldwide, frequently leading to liver cirrhosis, liver failure, and hepatocellular carcinoma. Evidence suggests that high viral antigen load may play a role in chronicity. Production of viral proteins is thought to depend on transcription of viral covalently closed circular DNA (cccDNA). In a human clinical trial with an RNA interference (RNAi)-based therapeutic targeting HBV transcripts, ARC-520, HBV S antigen (HBsAg) was strongly reduced in treatment-naïve patients positive for HBV e antigen (HBeAg) but was reduced significantly less in patients who were HBeAg-negative or had received long-term therapy with nucleos(t)ide viral replication inhibitors (NUCs). HBeAg positivity is associated with greater disease risk that may be moderately reduced upon HBeAg loss. The molecular basis for this unexpected differential response was investigated in chimpanzees chronically infected with HBV. Several lines of evidence demonstrated that HBsAg was expressed not only from the episomal cccDNA minichromosome but also from transcripts arising from HBV DNA integrated into the host genome, which was the dominant source in HBeAg-negative chimpanzees. Many of the integrants detected in chimpanzees lacked target sites for the small interfering RNAs in ARC-520, explaining the reduced response in HBeAg-negative chimpanzees and, by extension, in HBeAg-negative patients. Our results uncover a heretofore underrecognized source of HBsAg that may represent a strategy adopted by HBV to maintain chronicity in the presence of host immunosurveillance. These results could alter trial design and endpoint expectations of new therapies for chronic HBV.


Subject(s)
DNA, Viral/metabolism , Hepatitis B Surface Antigens/metabolism , Hepatitis B, Chronic/therapy , RNA Interference , Virus Integration , Animals , Antiviral Agents/pharmacology , Base Sequence , Hepatitis B e Antigens/metabolism , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Hepatitis B, Chronic/pathology , Humans , Liver/pathology , Liver/virology , Pan troglodytes , Polyadenylation/drug effects , RNA Interference/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , RNA, Viral/metabolism , Virus Integration/drug effects , Virus Replication/drug effects
13.
Chest ; 151(5): 1069-1080, 2017 05.
Article in English | MEDLINE | ID: mdl-27884765

ABSTRACT

BACKGROUND: Influenza causes excessive hospitalizations and deaths. The study assessed the efficacy and safety of a clarithromycin-naproxen-oseltamivir combination for treatment of serious influenza. METHODS: From February to April 2015, we conducted a prospective open-label, randomized, controlled trial. Adult patients hospitalized for A(H3N2) influenza were randomly assigned to a 2-day combination of clarithromycin 500 mg, naproxen 200 mg, and oseltamivir 75 mg twice daily, followed by 3 days of oseltamivir or to oseltamivir 75 mg twice daily without placebo for 5 days as a control method (1:1). The primary end point was 30-day mortality. The secondary end points were 90-day mortality, serial nasopharyngeal aspirate (NPA) virus titer, percentage of neuraminidase-inhibitor-resistant A(H3N2) virus (NIRV) quasispecies, pneumonia severity index (PSI), and duration of hospital stay. RESULTS: Among the 217 patients with influenza A(H3N2) enrolled, 107 were randomly assigned to the combination treatment. The median age was 80 years, and 53.5% were men. Adverse events were uncommon. Ten patients died during the 30-day follow-up. The combination treatment was associated with lower 30-day mortality (P = .01), less frequent high dependency unit admission (P = .009), and shorter hospital stay (P < .0001). The virus titer and PSI (days 1-3; P < .01) and the NPA specimens with NIRV quasispecies ≥ 5% (days 1-2; P < .01) were significantly lower in the combination treatment group. Multivariate analysis showed that combination treatment was the only independent factor associated with lower 30-day mortality (OR, 0.06; 95% CI, 0.004-0.94; P = .04). CONCLUSIONS: Combination treatment reduced both 30- and 90-day mortality and length of hospital stay. Further study of the antiviral and immunomodulatory effects of this combination treatment of severe influenza is warranted. TRIAL REGISTRY: BioMed Central; No.: ISRCTN11273879 DOI 10.1186/ISRCTN11273879; URL: www.isrctn.com/ISRCTN11273879.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antiviral Agents/therapeutic use , Clarithromycin/therapeutic use , Influenza, Human/drug therapy , Naproxen/therapeutic use , Oseltamivir/therapeutic use , Aged , Aged, 80 and over , Drug Resistance, Viral , Drug Therapy, Combination , Female , Hospitalization , Humans , Influenza A Virus, H3N2 Subtype , Influenza, Human/immunology , Length of Stay , Male , Mortality , Nasopharynx/virology , Severity of Illness Index , Treatment Outcome , Viral Load
14.
Nat Microbiol ; 1: 16004, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-27572168

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) causes sporadic zoonotic disease and healthcare-associated outbreaks in human. MERS is often complicated by acute respiratory distress syndrome (ARDS) and multi-organ failure(1,2). The high incidence of renal failure in MERS is a unique clinical feature not often found in other human coronavirus infections(3,4). Whether MERS-CoV infects the kidney and how it triggers renal failure are not understood(5,6). Here, we demonstrated renal infection and apoptotic induction by MERS-CoV in human ex vivo organ culture and a nonhuman primate model. High-throughput analysis revealed that the cellular genes most significantly perturbed by MERS-CoV have previously been implicated in renal diseases. Furthermore, MERS-CoV induced apoptosis through upregulation of Smad7 and fibroblast growth factor 2 (FGF2) expression in both kidney and lung cells. Conversely, knockdown of Smad7 effectively inhibited MERS-CoV replication and protected cells from virus-induced cytopathic effects. We further demonstrated that hyperexpression of Smad7 or FGF2 induced a strong apoptotic response in kidney cells. Common marmosets infected by MERS-CoV developed ARDS and disseminated infection in kidneys and other organs. Smad7 and FGF2 expression were elevated in the lungs and kidneys of the infected animals. Our results provide insights into the pathogenesis of MERS-CoV and host targets for treatment.


Subject(s)
Apoptosis , Coronavirus Infections/pathology , Fibroblast Growth Factor 2/metabolism , Kidney/pathology , Lung/pathology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Smad7 Protein/metabolism , Animals , Callithrix , Cytopathogenic Effect, Viral , Disease Models, Animal , Host-Pathogen Interactions , Humans , Organ Culture Techniques
15.
Lancet Infect Dis ; 16(2): 209-18, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26559482

ABSTRACT

BACKGROUND: Pretreatment with topical imiquimod, a synthetic agonist of toll-like receptor 7, significantly improved the immunogenicity of influenza vaccination in elderly people. We aimed to clarify its effect in a younger age group. METHODS: In this double-blind, randomised controlled trial, we enrolled healthy volunteers aged 18-30 years in early 2014 to receive the 2013-14 northern-hemisphere winter trivalent influenza vaccine at the Queen Mary Hospital, (Hong Kong, China). Eligible participants were randomly assigned (1:1:1:1) to one of the four vaccination groups: the study group, topical imiquimod-cream followed by intradermal trivalent influenza vaccine (INF-Q-ID), or one of three control groups, topical aqueous-cream control followed by intradermal trivalent influenza vaccine (INF-C-ID), topical aqueous-cream control followed by intramuscular trivalent influenza vaccine (INF-C-IM), and topical imiquimod-cream followed by intradermal normal-saline injection (SAL-Q-ID). Randomisation was by computer-generated lists in blocks of four. The type of topical treatment was masked from volunteers and investigators, although not from the study nurse. Serum haemagglutination-inhibition and microneutralisation-antibody titres were assayed. The primary outcome was seroconversion at day 7 after treatment for three vaccine strains of influenza (A/California/07/2009 H1N1-like virus [A/California/H1N1], A/Victoria/361/2011 H3N2-like virus [A/Victoria/H3N2], and B/Massachusetts/2/2012-like virus [B/Yamagata lineage]) and four non-vaccine strains (A/HK/485197/14 [H3N2 Switzerland-like lineage], prototype A/WSN/1933 [H1N1], A/HK/408027/09 [prepandemic seasonal H1N1], and B/HK/418078/11 [Victoria lineage]). Analysis was done on an intention-to-treat basis. This trial is registered with ClinicalTrials.gov, number NCT02103023. FINDINGS: We enrolled 160 healthy volunteers between March 1 and May 31, 2014, and 40 participants were randomly assigned to each study group. For the A/California/H1N1 strain, seroconversion at day 7 occurred in 39 participants (98%) in the INF-Q-ID group, 25 (63%) in the INF-C-ID group, 18 (45%) in the INF-C-IM group, and none in the SAL-Q-ID group; for the A/Victoria/H3N2, this was 30 (75%) in the INF-Q-ID group, four (10%) in the INF-C-ID group, four (10%) in the INF-C-IM group, and none in the SAL-Q-ID group; and for the B/Massachusetts (Yamagata lineage) strain, this was 36 (90%) in the INF-Q-ID group, 27 (68%) in the INF-C-ID group, 17 (43%) in the INF-C-IM group, and one (3%) in the SAL-Q-ID group (p<0·0001 for all three vaccine strains). Adverse reactions were infrequent and self-limited and did not differ between the four groups. Furthermore, the seroconversion rate against the four non-vaccine strains was better in the INF-Q-ID group than in the control groups on days 7 and 21 (p<0·0001). The most common adverse events were grade 1 redness (five participants in the INF-Q-ID group, three in INF-C-ID, one in INF-C-IM, and one in SAL-Q-ID) and grade 1 swelling (seven participants in INF-Q-ID group, five in INF-C-ID, three in INF-C-IM, and two in SAL-Q-ID. INTERPRETATION: Topical application of imiquimod before intradermal trivalent influenza vaccine significantly improved immunogenicity against the vaccine influenza strains in young healthy individuals and increased immunogenicity against the non-vaccine strains, especially the antigenically drifted H3N2 strain of 2015, which was not included in the 2013-14 recommended vaccine. Further studies should be done to establish the efficacy and safety of this approach for other injectable vaccines to augment the onset and range of protection. FUNDING: The Shaw Foundation Hong Kong, Health and Medical Research Fund (Hong Kong, China), The Consultancy Service for Enhancing Laboratory Surveillance of Emerging Infectious Disease for the HKSAR (Department of Health, Hong Kong, China), The Providence Foundation, Respiratory Viral Research Foundation.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Aminoquinolines/administration & dosage , Influenza Vaccines/administration & dosage , Influenza, Human/immunology , Influenza, Human/prevention & control , Administration, Topical , Adolescent , Adult , Double-Blind Method , Female , Hong Kong , Humans , Imiquimod , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/immunology , Injections, Intradermal , Male , Young Adult
16.
Antiviral Res ; 121: 97-108, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26129970

ABSTRACT

Current therapies for chronic hepatitis B virus infection (CHB) - nucleos(t)ide analogue reverse transcriptase inhibitors and interferons - result in low rates of functional cure defined as sustained off-therapy seroclearance of hepatitis B surface antigen (HBsAg). One likely reason is the inability of these therapies to consistently and substantially reduce the levels of viral antigen production. Accumulated evidence suggests that high serum levels of HBsAg result in exhaustion of the host immune system, rendering it unable to mount the effective antiviral response required for HBsAg clearance. New mechanistic approaches are required to produce high rates of HBsAg seroclearance in order to greatly reduce off-treatment disease progression. Already shown to be a clinically viable means of reducing gene expression in a number of other diseases, therapies based on RNA interference (RNAi) can directly target hepatitis B virus transcripts with high specificity, profoundly reducing the production of viral proteins. The fact that the viral RNA transcripts contain overlapping sequences means that a single RNAi trigger can result in the degradation of all viral transcripts, including all messenger RNAs and pregenomic RNA. Advances in the design of RNAi triggers have increased resistance to degradation and reduced nonspecific innate immune stimulation. Additionally, new methods to effectively deliver the trigger to liver hepatocytes, and specifically to the cytoplasmic compartment, have resulted in increased efficacy and tolerability. An RNAi-based drug currently in clinical trials is ARC-520, a dynamic polyconjugate in which the RNAi trigger is conjugated to cholesterol, which is coinjected with a hepatocyte-targeted, membrane-active peptide. Phase 2a clinical trial results indicate that ARC-520 was well tolerated and resulted in significant, dose-dependent reduction in HBsAg for up to 57days in CHB patients. RNAi-based therapies may play an important role in future therapeutic regimes aimed at improving HBsAg seroclearance and eliminating the need for lifelong therapy. This paper forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B."


Subject(s)
Biological Products/therapeutic use , Biological Therapy/methods , Hepatitis B, Chronic/drug therapy , RNA Interference , RNA, Small Interfering/therapeutic use , Biological Products/adverse effects , Clinical Trials, Phase II as Topic , Humans , RNA, Small Interfering/adverse effects , Treatment Outcome
17.
Antiviral Res ; 121: 47-58, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26092643

ABSTRACT

The host immune system plays an important role in chronic hepatitis B (CHB), both in viral clearance and hepatocellular damage. Advances in our understanding of the natural history of the disease have led to redefining the major phases of infection, with the "high replicative, low inflammatory" phase now replacing what was formerly termed the "immune tolerant" phase, and the "nonreplicative phase" replacing what was formerly termed the "inactive carrier" phase. As opposed to the earlier view that HBV establishes chronic infection by exploiting the immaturity of the neonate's immune system, new findings on trained immunity show that the host is already somewhat "matured" following birth, and is actually very capable of responding immunologically, potentially altering future hepatitis B treatment strategies. While existing therapies are effective in reducing viral load and necroinflammation, often restoring the patient to near-normal health, they do not lead to a cure except in very rare cases and, in many patients, viremia rebounds after cessation of treatment. Researchers are now challenged to devise therapies that will eliminate infection, with a particular focus on eliminating the persistence of viral cccDNA in the nuclei of hepatocytes. In the context of chronic hepatitis B, new definitions of 'cure' are emerging, such as 'functional' and 'virological' cure, defined by stable off-therapy suppression of viremia and antigenemia, and the normalization of serum ALT and other liver-related laboratory tests. Continued advances in the understanding of the complex biology of chronic hepatitis B have resulted in the development of new, experimental therapies targeting viral and host factors and pathways previously not accessible to therapy, approaches which may lead to virological cures in the near term and functional cures upon long term follow-up. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B."


Subject(s)
Hepatitis B virus/physiology , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/therapy , Host-Pathogen Interactions , Antiviral Agents/therapeutic use , Disease Progression , Hepatitis B, Chronic/pathology , Hepatitis B, Chronic/virology , Humans , Treatment Outcome
18.
Cancer Chemother Pharmacol ; 74(3): 511-20, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25038613

ABSTRACT

PURPOSE: Highly expressed in cancer protein 1 (Hec1) is an oncogene and a promising molecular target for novel anticancer drugs. The purpose of this study was to evaluate the potential of a Hec1 inhibitor, TAI-95, as a treatment for primary liver cancer. METHODS: In vitro and in vivo methods were used to test the activity of TAI-95. Gene expression analysis was used to evaluate clinical correlation of the target. RESULTS: In vitro growth inhibition results showed that TAI-95 has excellent potency on a wide range of primary liver cancer cell lines (hepatoblastoma or hepatocellular carcinoma) (GI(50) 30-70 nM), which was superior to sorafenib and other cytotoxic agents. TAI-95 was relatively inactive in non-cancerous cell lines (GI(50) > 10 µM). TAI-95 disrupts the interaction between Hec1 and Nek2 and leads to degradation of Nek2, chromosomal misalignment, and apoptotic cell death. TAI-95 showed synergistic activity in selected cancer cell lines with doxorubicin, paclitaxel, and topotecan, but not with sorafenib. TAI-95 shows excellent potency in a Huh-7 xenograft mouse model when administered orally. Gene expression analysis of clinical samples demonstrated increased expression of Hec1/NDC80 and associated genes (Nek2, SMC1A, and SMC2) in 27 % of patients, highlighting the potential for using this therapeutic approach to target patients with high Hec1 expression. CONCLUSION: Inhibition of Hec1 using small molecule approach may represent a promising novel approach for the treatment of primary liver cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Liver Neoplasms/drug therapy , Nuclear Proteins/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Cytoskeletal Proteins , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Mice, SCID , Molecular Targeted Therapy/methods , NIMA-Related Kinases , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
19.
J Med Chem ; 57(10): 4098-110, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24773549

ABSTRACT

A series of 4-aryl-N-arylcarbonyl-2-aminothiazoles of scaffold 4 was designed and synthesized as Hec1/Nek2 inhibitors. Structural optimization of 4 led to compound 32 bearing C-4' 4-methoxyphenoxy and 4-(o-fluoropyridyl)carbonyl groups that showed low nanomolar in vitro antiproliferative activity (IC50: 16.3-42.7 nM), high intravenous AUC (64.9 µM·h, 2.0 mg/kg) in SD rats, and significant in vivo antitumor activity (T/C = 32%, 20 mg/kg, IV) in mice bearing human MDA-MB-231 xenografts. Cell responses resulting from Hec1/Nek2 inhibition were observed in cells treated with 32, including a reduced level of Hec1 coimmunoprecipitated with Nek2, degradation of Nek2, mitotic abnormalities, and apoptosis. Compound 32 showed selectivity toward cancer cells over normal phenotype cells and was inactive in a [(3)H]astemizole competitive binding assay for hERG liability screening. Therefore, 32 is as a good lead toward the discovery of a preclinical candidate targeting Hec1/Nek2 interaction.


Subject(s)
Antineoplastic Agents/pharmacology , Nuclear Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Thiazoles/pharmacology , Animals , Cell Line, Tumor , Cytoskeletal Proteins , Drug Discovery , Female , Humans , Male , Mice , Mice, Inbred BALB C , NIMA-Related Kinases , Rats , Rats, Sprague-Dawley , Thiazoles/pharmacokinetics , Xenograft Model Antitumor Assays
20.
Mol Cancer Ther ; 13(6): 1419-30, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24694948

ABSTRACT

Current cytotoxic chemotherapy produces clinical benefit in patients with breast cancer but the survival impact is modest. To explore novel cytotoxic agents for the treatment of advanced disease, we have characterized a new and pharmacokinetically improved Hec1-targeted compound, TAI-95. Nine of 11 breast cancer cell lines tested were sensitive to nanomolar levels of TAI-95 (GI(50) = 14.29-73.65 nmol/L), and more importantly, TAI-95 was active on a number of cell lines that were resistant (GI(50) > 10 µmol/L) to other established cytotoxic agents. TAI-95 demonstrates strong inhibition of in vivo tumor growth of breast cancer model when administered orally, without inducing weight loss or other obvious toxicity. Mechanistically, TAI-95 acts by disrupting the interaction between Hec1 and Nek2, leading to apoptotic cell death in breast cancer cells. Furthermore, TAI-95 is active on multidrug-resistant (MDR) cell lines and led to downregulation of the expression of P-glycoprotein (Pgp), an MDR gene. In addition, TAI-95 increased the potency of cytotoxic Pgp substrates, including doxorubicin and topotecan. Certain clinical subtypes of breast cancer more likely to respond to Hec1-targeted therapy were identified and these subtypes are the ones associated with poor prognosis. This study highlights the potential of the novel anticancer compound TAI-95 in difficult-to-treat breast cancers.


Subject(s)
Antineoplastic Agents/administration & dosage , Breast Neoplasms/drug therapy , Molecular Targeted Therapy , Niacinamide/analogs & derivatives , Nuclear Proteins/genetics , Thiazoles/administration & dosage , Animals , Apoptosis/genetics , Breast Neoplasms/pathology , Cytoskeletal Proteins , Doxorubicin/administration & dosage , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic , Heterocyclic Compounds, 4 or More Rings , Humans , In Vitro Techniques , MCF-7 Cells , Mice , Niacinamide/administration & dosage , Nuclear Proteins/antagonists & inhibitors , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...