Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732926

ABSTRACT

Muscle synergy has been widely acknowledged as a possible strategy of neuromotor control, but current research has ignored the potential inhibitory components in muscle synergies. Our study aims to identify and characterize the inhibitory components within motor modules derived from electromyography (EMG), investigate the impact of aging and motor expertise on these components, and better understand the nervous system's adaptions to varying task demands. We utilized a rectified latent variable model (RLVM) to factorize motor modules with inhibitory components from EMG signals recorded from ten expert pianists when they played scales and pieces at different tempo-force combinations. We found that older participants showed a higher proportion of inhibitory components compared with the younger group. Senior experts had a higher proportion of inhibitory components on the left hand, and most inhibitory components became less negative with increased tempo or decreased force. Our results demonstrated that the inhibitory components in muscle synergies could be shaped by aging and expertise, and also took part in motor control for adapting to different conditions in complex tasks.


Subject(s)
Aging , Electromyography , Muscle, Skeletal , Humans , Electromyography/methods , Aging/physiology , Muscle, Skeletal/physiology , Adult , Male , Female , Aged , Young Adult , Middle Aged
2.
Article in English | MEDLINE | ID: mdl-36107887

ABSTRACT

Healthy ageing modifies neuromuscular control of human overground walking. Previous studies found that ageing changes gait biomechanics, but whether there is concurrent ageing-related modulation of neuromuscular control remains unclear. We analyzed gait kinematics and electromyographic signals (EMGs; 14 lower-limb and trunk muscles) collected at three speeds during overground walking in 11 healthy young adults (mean age of 23.4 years) and 11 healthy elderlies (67.2 years). Neuromuscular control was characterized by extracting muscle synergies from EMGs and the synergies of both groups were k -means-clustered. The synergies of the two groups were grossly similar, but we observed numerous cluster- and muscle-specific differences between the age groups. At the population level, some hip-motion-related synergy clusters were more frequently identified in elderlies while others, more frequent in young adults. Such differences in synergy prevalence between the age groups are consistent with the finding that elderlies had a larger hip flexion range. For the synergies shared between both groups, the elderlies had higher inter-subject variability of the temporal activations than young adults. To further explore what synergy characteristics may be related to this inter-subject variability, we found that the inter-subject variance of temporal activations correlated negatively with the sparseness of the synergies in elderlies but not young adults during slow walking. Overall, our results suggest that as humans age, not only are the muscle synergies for walking fine-tuned in structure, but their temporal activation patterns are also more heterogeneous across individuals, possibly reflecting individual differences in prior sensorimotor experience or ageing-related changes in limb neuro-musculoskeletal properties.


Subject(s)
Gait , Walking , Adult , Biomechanical Phenomena , Electromyography/methods , Gait/physiology , Humans , Muscle, Skeletal/physiology , Walking/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...