Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 188: 109780, 2020 09.
Article in English | MEDLINE | ID: mdl-32554275

ABSTRACT

Direct evidence about associations between fine particles (PM2.5) components and the corresponding PM2.5 bioreactivity at the individual level is limited. We conducted a panel study with repeated personal measurements involving 56 healthy residents in Hong Kong. Fractional exhaled nitric oxide (FeNO) levels were measured from these subjects. Out of 56 subjects, 27 (48.2%) participated in concurrent outdoor, indoor, and personal PM2.5 monitoring. Organic carbon (OC), elemental carbon (EC), particle bound-polycyclic aromatic hydrocarbons (PAHs), and phthalates were analyzed. Alteration in cell viability, lactic dehydrogenase (LDH), interleukin-6 (IL-6), and 8-isoprostane by 50 µg/mL PM2.5 extracts was determined in A549 cells in vitro. Moderate heterogeneities were shown in PM2.5 exposures and the corresponding PM2.5 bioreactivity across different sample types. Associations between the analyzed components and PM2.5 bioreactivity were assessed using the multiple regression models. Toxicological results revealed that indoor and personal exposure to OC as well as PAH compounds and their derivatives (e.g., Alkyl-PAHs, Oxy-PAHs) induced cell viability reduction and increase in levels of LDH, IL-6, and 8-isoprostane. Overall, OC in personal exposure played a dominant role in PM2.5-induced bioreactivity. Subsequently, we examined the associations of FeNO with IL-6 and 8-isoprostane levels using mixed-effects models. The results showed that per interquartile change in IL-6 and 8-isoprostane were associated with a 6.4% (p < 0.01) and 11.1% (p < 0.01) increase in FeNO levels, respectively. Our study explored the toxicological properties of chemical components in PM2.5 exposure, which suggested that residential indoors and personal OC and PAHs should be of great concern for human health. These findings indicated that further studies in inflammation and oxidative stress-related illnesses due to particle exposure would benefit from the assessment of in vitro PM2.5 bioreactivity.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution, Indoor/analysis , Carbon/analysis , Environmental Monitoring , Hong Kong , Humans , Particle Size , Particulate Matter/analysis , Particulate Matter/toxicity , Polycyclic Aromatic Hydrocarbons/analysis
2.
Sci Rep ; 10(1): 1965, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029806

ABSTRACT

We have investigated changes of western North Pacific land-falling tropical cyclone (TC) characteristics due to warmer climate conditions, using the pseudo-global-warming (PGW) technique. Historical simulations of three intense TCs making landfall in Pearl River Delta (PRD) were first conducted using the Weather Research and Forecasting (WRF) model. The same cases were then re-simulated by superimposing near- (2015-2039) and far- (2075-2099) future temperature and humidity changes onto the background climate; these changes were derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) multi-model projections according to the Representative Concentration Pathway (RCP) 8.5 scenario. Peak intensities of TCs (maximum surface wind in their lifetimes) are expected to increase by ~ (3) 10% in the (near) far future. Further experiments indicate that surface warming alone acts to intensify TCs by enhancing sea surface heat flux, while warmer atmosphere acts in the opposite way by increasing the stability. In the far future, associated storm surges are also estimated to increase by about 8.5%, computed by the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model. Combined with sea level rise and estimated land vertical displacement, TC-induced storm tide affecting PRD will increase by ~1 m in the future 2075-2099 period.

3.
Sci Total Environ ; 654: 514-524, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30447590

ABSTRACT

Personal exposure and ambient fine particles (PM2.5) measurements for 13 adult subjects (ages 19-57) were conducted in Hong Kong between April 2014 and June 2015. Six to 21 personal samples (mean = 19) per subject were obtained throughout the study period. Samples were analyzed for mass by gravimetric analysis, and 19 elements (from Na to Pb) were analyzed using X-Ray Fluorescence. Higher subject-specific correlations between personal and ambient sulfur (rs = 0.92; p < 0.001) were found as compared to PM2.5 mass (rs = 0.79; p < 0.001) and other elements (0.06 < rs < 0.86). Personal vs. ambient sulfur regression yielded an average exposure factor (Fpex) of 0.73 ±â€¯0.02, supporting the use of sulfur as a surrogate to estimate personal exposure to PM2.5 of ambient origin (Ea). Ea accounted for 41-82% and 57-73% of total personal PM2.5 exposures (P) by season and by subject, respectively. The importance of both Ea and non-ambient exposures (Ena, 11.2 ±â€¯5.6 µg/m3; 32.5 ±â€¯10.9%) are noted. Mixed-effects models were applied to estimate the relationships between ambient PM2.5 concentrations and their corresponding exposure variables (Ea, P). Higher correlations for Ea (0.90; p < 0.001) than for P (0.58; p < 0.01) were found. A calibration coefficient < 1 suggests an attenuation of 22% (ranging 16-28%) of the true effect estimates when using average ambient concentrations at central monitoring stations as surrogates for Ea. Stationary ambient data can be used to assess population exposure only if PM exposure is dominated by Ea.


Subject(s)
Air Pollutants/analysis , Environmental Exposure/analysis , Particulate Matter/analysis , Adult , Female , Hong Kong , Humans , Male , Middle Aged , Seasons , Young Adult
4.
Sci Total Environ ; 618: 132-141, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29127869

ABSTRACT

Trans-boundary air pollution (TAP) is a crucial factor affecting air quality, and its contribution may vary over time and differ under various atmospheric conditions. This study firstly applies an integrated statistical scheme to estimate the contributions of TAP and local sources to air pollutants in a city, and then investigate the influences of tropical cyclones (TC) on TAP. Hong Kong is chosen as an example because of its significant and special TAP characteristics. This study focuses on four major air pollutants, namely, respirable and fine suspended particulates (RSP/PM10 and FSP/PM2.5), sulfur dioxide (SO2), and nitrogen dioxide (NO2), from 2002 to 2013. Our results show that, on average, TAP is the major contributor of the annual RSP, FSP, SO2, and NO2 in Hong Kong. We estimate that when a TC is approaching, the increase in pollutant concentration in Hong Kong is mainly due to the increase in TAP contribution by the strengthened northerly wind at higher level of atmosphere (≥900hPa). These changes are accompanied by decreases in precipitation and increases in northerly/north-easterly wind, which may prolong the lifetime of pollutants, enhancing pollutant transport from mainland China to Hong Kong.

6.
Proc Natl Acad Sci U S A ; 110(19): 7574-9, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23610388

ABSTRACT

Summer climate in the Northwestern Pacific (NWP) displays large year-to-year variability, affecting densely populated Southeast and East Asia by impacting precipitation, temperature, and tropical cyclones. The Pacific-Japan (PJ) teleconnection pattern provides a crucial link of high predictability from the tropics to East Asia. Using coupled climate model experiments, we show that the PJ pattern is the atmospheric manifestation of an air-sea coupled mode spanning the Indo-NWP warm pool. The PJ pattern forces the Indian Ocean (IO) via a westward propagating atmospheric Rossby wave. In response, IO sea surface temperature feeds back and reinforces the PJ pattern via a tropospheric Kelvin wave. Ocean coupling increases both the amplitude and temporal persistence of the PJ pattern. Cross-correlation of ocean-atmospheric anomalies confirms the coupled nature of this PJIO mode. The ocean-atmosphere feedback explains why the last echoes of El Niño-Southern Oscillation are found in the IO-NWP in the form of the PJIO mode. We demonstrate that the PJIO mode is indeed highly predictable; a characteristic that can enable benefits to society.


Subject(s)
Climate , Seasons , Temperature , Weather , Air , Geography , Japan , Models, Theoretical , Oscillometry , Pacific Ocean , Pressure , Regression Analysis , Reproducibility of Results , Time Factors , Tropical Climate
7.
Science ; 316(5828): 1181-4, 2007 May 25.
Article in English | MEDLINE | ID: mdl-17412920

ABSTRACT

How anthropogenic climate change will affect hydroclimate in the arid regions of southwestern North America has implications for the allocation of water resources and the course of regional development. Here we show that there is a broad consensus among climate models that this region will dry in the 21st century and that the transition to a more arid climate should already be under way. If these models are correct, the levels of aridity of the recent multiyear drought or the Dust Bowl and the 1950s droughts will become the new climatology of the American Southwest within a time frame of years to decades.

SELECTION OF CITATIONS
SEARCH DETAIL
...