Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
iScience ; 27(3): 109224, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439954

ABSTRACT

Molecular mechanisms underlying quantitative variations of pathogenicity remain elusive. Here, we identified the Xanthomonas campestris XopJ6 effector that triggers disease resistance in cauliflower and Arabidopsis thaliana. XopJ6 is a close homolog of the Ralstoniapseudosolanacearum PopP2 YopJ family acetyltransferase. XopJ6 is recognized by the RRS1-R/RPS4 NLR pair that integrates a WRKY decoy domain mimicking effector targets. We identified a XopJ6 natural variant carrying a single residue substitution in XopJ6 WRKY-binding site that disrupts interaction with WRKY proteins. This mutation allows XopJ6 to evade immune perception while retaining some XopJ6 virulence functions. Interestingly, xopJ6 resides in a Tn3-family transposon likely contributing to xopJ6 copy number variation (CNV). Using synthetic biology, we demonstrate that xopJ6 CNV tunes pathogen virulence on Arabidopsis through gene dosage-mediated modulation of xopJ6 expression. Together, our findings highlight how sequence and structural genetic variations restricted at a particular effector gene contribute to bacterial host adaptation.

2.
Mol Plant Microbe Interact ; 36(11): 737-748, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37470457

ABSTRACT

Pseudomonas simiae WCS417 is a plant growth-promoting rhizobacterium that improves plant health and development. In this study, we investigate the early leaf responses of Arabidopsis thaliana to WCS417 exposure and the possible involvement of formate dehydrogenase (FDH) in such responses. In vitro-grown A. thaliana seedlings expressing an FDH::GUS reporter show a significant increase in FDH promoter activity in their roots and shoots after 7 days of indirect exposure (without contact) to WCS417. After root exposure to WCS417, the leaves of FDH::GUS plants grown in the soil also show an increased FDH promoter activity in hydathodes. To elucidate early foliar responses to WCS417 as well as FDH involvement, the roots of A. thaliana wild-type Col and atfdh1-5 knock-out mutant plants grown in soil were exposed to WCS417, and proteins from rosette leaves were subjected to proteomic analysis. The results reveal that chloroplasts, in particular several components of the photosystems PSI and PSII, as well as members of the glutathione S-transferase family, are among the early targets of the metabolic changes induced by WCS417. Taken together, the alterations in the foliar proteome, as observed in the atfdh1-5 mutant, especially after exposure to WCS417 and involving stress-responsive genes, suggest that FDH is a node in the early events triggered by the interactions between A. thaliana and the rhizobacterium WCS417. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Proteome/metabolism , Proteomics , Plant Roots/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Soil , Gene Expression Regulation, Plant
3.
Bio Protoc ; 12(13): e3776, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35991161

ABSTRACT

Competition assays are a simple phenotyping strategy that confront two bacterial strains to evaluate their relative fitness. Because they are more accurate than single-strain growth assays, competition assays can be used to highlight slight differences that would not otherwise be detectable. In the frame of host-pathogens interactions, they can be very useful to study the contribution of individual bacterial genes to bacterial fitness and lead to the identification of new adaptive traits. Here, we describe how to perform such competition assays by taking the example of the model phytopathogenic bacterium Xanthomonas campestris pv. campestris during infection of the mesophyll of its cauliflower host. This phenotypic assay is based on the use of a Competitive Index (CI) that compares the relative abundance of co-inoculated strains before and after inoculation. Since multiplication is a direct proxy for bacterial fitness, the evolution of the ratio between both strains in the mixed population is a direct way to assess differences in fitness in a given environment. In this protocol, we exploit the blue staining of GUS-expressing bacteria to count blue vs. white colonies on plates and estimate the competitiveness of the strains of interest in plant mesophyll.

4.
New Phytol ; 236(1): 235-248, 2022 10.
Article in English | MEDLINE | ID: mdl-35706385

ABSTRACT

Plant diseases are an important threat to food production. While major pathogenicity determinants required for disease have been extensively studied, less is known on how pathogens thrive during host colonization, especially at early infection stages. Here, we used randomly barcoded-transposon insertion site sequencing (RB-TnSeq) to perform a genome-wide screen and identify key bacterial fitness determinants of the vascular pathogen Xanthomonas campestris pv campestris (Xcc) during infection of the cauliflower host plant (Brassica oleracea). This high-throughput analysis was conducted in hydathodes, the natural entry site of Xcc, in xylem sap and in synthetic media. Xcc did not face a strong bottleneck during hydathode infection. In total, 181 genes important for fitness were identified in plant-associated environments with functional enrichment in genes involved in metabolism but only few genes previously known to be involved in virulence. The biological relevance of 12 genes was independently confirmed by phenotyping single mutants. Notably, we show that XC_3388, a protein with no known function (DUF1631), plays a key role in the adaptation and virulence of Xcc possibly through c-di-GMP-mediated regulation. This study revealed yet unsuspected social behaviors adopted by Xcc individuals when confined inside hydathodes at early infection stages.


Subject(s)
Brassica , Xanthomonas campestris , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Brassica/microbiology , Plant Diseases/microbiology , Virulence/genetics , Xylem/metabolism
5.
Mol Plant Microbe Interact ; 35(9): 791-802, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35536128

ABSTRACT

Pathovars of Xanthomonas campestris cause distinct diseases on different brassicaceous hosts. The genomic relationships among pathovars as well as the genetic determinants of host range and tissue specificity remain poorly understood despite decades of research. Here, leveraging advances in multiplexed long-read technology, we fully sequenced the genomes of a collection of X. campestris strains isolated from cruciferous crops and weeds in New York and California as well as strains from global collections, to investigate pathovar relationships and candidate genes for host- and tissue-specificity. Pathogenicity assays and genomic comparisons across this collection and publicly available X. campestris genomes revealed a correlation between pathovar and genomic relatedness and provide support for X. campestris pv. barbareae, the validity of which had been questioned. Linking strain host range with type III effector repertoires identified AvrAC (also 'XopAC') as a candidate host-range determinant, preventing infection of Matthiola incana, and this was confirmed experimentally. Furthermore, the presence of a copy of the cellobiosidase gene cbsA with coding sequence for a signal peptide was found to correlate with the ability to infect vascular tissues, in agreement with a previous study of diverse Xanthomonas species; however, heterologous expression in strains lacking the gene gave mixed results, indicating that factors in addition to cbsA influence tissue specificity of X. campestris pathovars. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Xanthomonas campestris , Xanthomonas , Genomics , Organ Specificity , Protein Sorting Signals , Xanthomonas/genetics , Xanthomonas campestris/genetics
6.
Mol Plant Pathol ; 23(2): 159-174, 2022 02.
Article in English | MEDLINE | ID: mdl-34837293

ABSTRACT

Xanthomonas campestris pv. campestris (Xcc) is a seed-transmitted vascular pathogen causing black rot disease on cultivated and wild Brassicaceae. Xcc enters the plant tissues preferentially via hydathodes, which are organs localized at leaf margins. To decipher both physiological and virulence strategies deployed by Xcc during early stages of infection, the transcriptomic profile of Xcc was analysed 3 days after entry into cauliflower hydathodes. Despite the absence of visible plant tissue alterations and despite a biotrophic lifestyle, 18% of Xcc genes were differentially expressed, including a striking repression of chemotaxis and motility functions. The Xcc full repertoire of virulence factors had not yet been activated but the expression of the HrpG regulon composed of 95 genes, including genes coding for the type III secretion machinery important for suppression of plant immunity, was induced. The expression of genes involved in metabolic adaptations such as catabolism of plant compounds, transport functions, sulphur and phosphate metabolism was upregulated while limited stress responses were observed 3 days postinfection. We confirmed experimentally that high-affinity phosphate transport is needed for bacterial fitness inside hydathodes. This analysis provides information about the nutritional and stress status of bacteria during the early biotrophic infection stages and helps to decipher the adaptive strategy of Xcc to the hydathode environment.


Subject(s)
Brassica , Xanthomonas campestris , Xanthomonas , Adaptation, Physiological/genetics , Bacterial Proteins/metabolism , Brassica/genetics , Gene Expression Regulation, Bacterial , Plant Diseases/genetics , Transcriptome/genetics , Virulence/genetics , Xanthomonas/metabolism , Xanthomonas campestris/genetics
7.
Int J Mol Sci ; 22(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34638807

ABSTRACT

Calcium signals are crucial for the activation and coordination of signaling cascades leading to the establishment of plant defense mechanisms. Here, we studied the contribution of CML8, an Arabidopsis calmodulin-like protein in response to Ralstonia solanacearum and to pathogens with different lifestyles, such as Xanthomonas campestris pv. campestris and Phytophtora capsici. We used pathogenic infection assays, gene expression, RNA-seq approaches, and comparative analysis of public data on CML8 knockdown and overexpressing Arabidopsis lines to demonstrate that CML8 contributes to defense mechanisms against pathogenic bacteria and oomycetes. CML8 gene expression is finely regulated at the root level and manipulated during infection with Ralstonia, and CML8 overexpression confers better plant tolerance. To understand the processes controlled by CML8, genes differentially expressed at the root level in the first hours of infection have been identified. Overexpression of CML8 also confers better tolerance against Xanthomonas and Phytophtora, and most of the genes differentially expressed in response to Ralstonia are differentially expressed in these different pathosystems. Collectively, CML8 acts as a positive regulator against Ralstonia solanaceraum and against other vascular or root pathogens, suggesting that CML8 is a multifunctional protein that regulates common downstream processes involved in the defense response of plants to several pathogens.


Subject(s)
Arabidopsis/metabolism , Calcium/metabolism , Disease Resistance , Plant Diseases , Signal Transduction , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis/physiology , Gene Expression Regulation, Plant , Phytophthora , Ralstonia solanacearum , Xanthomonas campestris
9.
New Phytol ; 219(1): 391-407, 2018 07.
Article in English | MEDLINE | ID: mdl-29677397

ABSTRACT

Xanthomonas transcription activator-like effectors (TALEs) are injected inside plant cells to promote host susceptibility by enhancing transcription of host susceptibility genes. TALE-encoding (tal) genes were thought to be absent from Brassicaceae-infecting Xanthomonas campestris (Xc) genomes based on four reference genomic sequences. We discovered tal genes in 26 of 49 Xc strains isolated worldwide and used a combination of single molecule real time (SMRT) and tal amplicon sequencing to yield a near-complete description of the TALEs found in Xc (Xc TALome). The 53 sequenced tal genes encode 21 distinct DNA binding domains that sort into seven major DNA binding specificities. In silico analysis of the Brassica rapa promoterome identified a repertoire of predicted TALE targets, five of which were experimentally validated using quantitative reverse transcription polymerase chain reaction. The Xc TALome shows multiple signs of DNA rearrangements that probably drove its evolution from two ancestral tal genes. We discovered that Tal12a and Tal15a of Xcc strain Xca5 contribute together in the development of disease symptoms on susceptible B. oleracea var. botrytis cv Clovis. This large and polymorphic repertoire of TALEs opens novel perspectives for elucidating TALE-mediated susceptibility of Brassicaceae to black rot disease and for understanding the molecular processes underlying TALE evolution.


Subject(s)
Host-Pathogen Interactions/genetics , Transcription Activator-Like Effectors/genetics , Xanthomonas campestris/genetics , Xanthomonas campestris/pathogenicity , Brassica/microbiology , Genome, Bacterial , Phylogeny , Plant Diseases/microbiology
10.
Plant Physiol ; 174(2): 700-716, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28184011

ABSTRACT

Hydathodes are water pores found on leaves of a wide range of vascular plants and are the sites of guttation. We report here on the detailed anatomy of cauliflower (Brassicaoleracea) and Arabidopsis (Arabidopsis thaliana) hydathodes. Hydathode surface presents pores resembling stomata giving access to large cavities. Beneath, the epithem is composed of a lacunar and highly vascularized parenchyma offering a direct connection between leaf surface and xylem vessels. Arabidopsis hydathode pores were responsive to ABA and light similar to stomata. The flg22 flagellin peptide, a well-characterized elicitor of plant basal immunity, did not induce closure of hydathode pores in contrast to stomata. Because hydathodes are natural infection routes for several pathogens, we investigated hydathode infection by the adapted vascular phytopathogenic bacterium Xanthomonas campestris pv campestris (Xcc), the causal agent of black rot disease of Brassicaceae. Microscopic observations of hydathodes six days postinoculation indicated a digestion of the epithem cells and a high bacterial multiplication. Postinvasive immunity was shown to limit pathogen growth in the epithem and is actively suppressed by the type III secretion system and its effector proteins. Altogether, these results give a detailed anatomic description of Brassicaceae hydathodes and highlight the efficient use of this tissue as an initial niche for subsequent vascular systemic dissemination of Xcc in distant plant tissues.


Subject(s)
Brassica/anatomy & histology , Brassica/immunology , Plant Diseases/immunology , Xanthomonas campestris/pathogenicity , Abscisic Acid/pharmacology , Arabidopsis/anatomy & histology , Arabidopsis/drug effects , Arabidopsis/immunology , Arabidopsis/microbiology , Brassica/microbiology , Host-Pathogen Interactions , Plant Leaves/microbiology , Plant Stomata/anatomy & histology , Plants, Genetically Modified , Xanthomonas campestris/genetics
11.
Annu Rev Phytopathol ; 54: 163-87, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27296145

ABSTRACT

How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity.


Subject(s)
Genome, Bacterial , Host Specificity , Plant Diseases/microbiology , Xanthomonas/physiology , Xanthomonas/genetics
12.
BMC Genomics ; 16: 975, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26581393

ABSTRACT

BACKGROUND: The bacterial species Xanthomonas campestris infects a wide range of Brassicaceae. Specific pathovars of this species cause black rot (pv. campestris), bacterial blight of stock (pv. incanae) or bacterial leaf spot (pv. raphani). RESULTS: In this study, we extended the genomic coverage of the species by sequencing and annotating the genomes of strains from pathovar incanae (CFBP 1606R and CFBP 2527R), pathovar raphani (CFBP 5828R) and a pathovar formerly named barbareae (CFBP 5825R). While comparative analyses identified a large core ORFeome at the species level, the core type III effectome was limited to only three putative type III effectors (XopP, XopF1 and XopAL1). In Xanthomonas, these effector proteins are injected inside the plant cells by the type III secretion system and contribute collectively to virulence. A deep and strand-specific RNA sequencing strategy was adopted in order to experimentally refine genome annotation for strain CFBP 5828R. This approach also allowed the experimental definition of novel ORFs and non-coding RNA transcripts. Using a constitutively active allele of hrpG, a master regulator of the type III secretion system, a HrpG-dependent regulon of 141 genes co-regulated with the type III secretion system was identified. Importantly, all these genes but seven are positively regulated by HrpG and 56 of those encode components of the Hrp type III secretion system and putative effector proteins. CONCLUSIONS: This dataset is an important resource to mine for novel type III effector proteins as well as for bacterial genes which could contribute to pathogenicity of X. campestris.


Subject(s)
Gene Expression Profiling , Genomics , Xanthomonas campestris/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Molecular Sequence Annotation , Open Reading Frames , Regulon/genetics , Xanthomonas campestris/immunology
13.
J Biol Chem ; 290(10): 6022-36, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25586188

ABSTRACT

N-Glycans are widely distributed in living organisms but represent only a small fraction of the carbohydrates found in plants. This probably explains why they have not previously been considered as substrates exploited by phytopathogenic bacteria during plant infection. Xanthomonas campestris pv. campestris, the causal agent of black rot disease of Brassica plants, possesses a specific system for GlcNAc utilization expressed during host plant infection. This system encompasses a cluster of eight genes (nixE to nixL) encoding glycoside hydrolases (GHs). In this paper, we have characterized the enzymatic activities of these GHs and demonstrated their involvement in sequential degradation of a plant N-glycan using a N-glycopeptide containing two GlcNAcs, three mannoses, one fucose, and one xylose (N2M3FX) as a substrate. The removal of the α-1,3-mannose by the α-mannosidase NixK (GH92) is a prerequisite for the subsequent action of the ß-xylosidase NixI (GH3), which is involved in the cleavage of the ß-1,2-xylose, followed by the α-mannosidase NixJ (GH125), which removes the α-1,6-mannose. These data, combined to the subcellular localization of the enzymes, allowed us to propose a model of N-glycopeptide processing by X. campestris pv. campestris. This study constitutes the first evidence suggesting N-glycan degradation by a plant pathogen, a feature shared with human pathogenic bacteria. Plant N-glycans should therefore be included in the repertoire of molecules putatively metabolized by phytopathogenic bacteria during their life cycle.


Subject(s)
Brassica/genetics , Plant Diseases/genetics , Polysaccharides/genetics , Xanthomonas campestris/enzymology , Brassica/enzymology , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Humans , Plant Diseases/microbiology , Polysaccharides/metabolism , Xanthomonas campestris/genetics , Xanthomonas campestris/pathogenicity , Xylosidases/genetics , Xylosidases/metabolism , alpha-Mannosidase/genetics , alpha-Mannosidase/metabolism
14.
mBio ; 5(5): e01527-14, 2014 Sep 09.
Article in English | MEDLINE | ID: mdl-25205095

ABSTRACT

UNLABELLED: N-Acetylglucosamine (GlcNAc), the main component of chitin and a major constituent of bacterial peptidoglycan, is present only in trace amounts in plants, in contrast to the huge amount of various sugars that compose the polysaccharides of the plant cell wall. Thus, GlcNAc has not previously been considered a substrate exploited by phytopathogenic bacteria during plant infection. Xanthomonas campestris pv. campestris, the causal agent of black rot disease of Brassica plants, expresses a carbohydrate utilization system devoted to GlcNAc exploitation. In addition to genes involved in GlcNAc catabolism, this system codes for four TonB-dependent outer membrane transporters (TBDTs) and eight glycoside hydrolases. Expression of all these genes is under the control of GlcNAc. In vitro experiments showed that X. campestris pv. campestris exploits chitooligosaccharides, and there is indirect evidence that during the early stationary phase, X. campestris pv. campestris recycles bacterium-derived peptidoglycan/muropeptides. Results obtained also suggest that during plant infection and during growth in cabbage xylem sap, X. campestris pv. campestris encounters and metabolizes plant-derived GlcNAc-containing molecules. Specific TBDTs seem to be preferentially involved in the consumption of all these plant-, fungus- and bacterium-derived GlcNAc-containing molecules. This is the first evidence of GlcNAc consumption during infection by a phytopathogenic bacterium. Interestingly, N-glycans from plant N-glycosylated proteins are proposed to be substrates for glycoside hydrolases belonging to the X. campestris pv. campestris GlcNAc exploitation system. This observation extends the range of sources of GlcNAc metabolized by phytopathogenic bacteria during their life cycle. IMPORTANCE: Despite the central role of N-acetylglucosamine (GlcNAc) in nature, there is no evidence that phytopathogenic bacteria metabolize this compound during plant infection. Results obtained here suggest that Xanthomonas campestris pv. campestris, the causal agent of black rot disease on Brassica, encounters and metabolizes GlcNAc in planta and in vitro. Active and specific outer membrane transporters belonging to the TonB-dependent transporters family are proposed to import GlcNAc-containing complex molecules from the host, from the bacterium, and/or from the environment, and bacterial glycoside hydrolases induced by GlcNAc participate in their degradation. Our results extend the range of sources of GlcNAc metabolized by this phytopathogenic bacterium during its life cycle to include chitooligosaccharides that could originate from fungi or insects present in the plant environment, muropeptides leached during peptidoglycan recycling and bacterial lysis, and N-glycans from plant N-glycosylated proteins present in the plant cell wall as well as in xylem sap.


Subject(s)
Acetylglucosamine/metabolism , Plant Diseases/microbiology , Plant Proteins/metabolism , Xanthomonas campestris/pathogenicity , Brassica/microbiology , Cell Wall/chemistry , Cell Wall/microbiology , Computational Biology , Membrane Transport Proteins/metabolism , Mutation , Peptidoglycan/chemistry , Phenotype , Plasmids/genetics , Promoter Regions, Genetic , Xanthomonas campestris/genetics , Xylem/microbiology
15.
FEMS Microbiol Ecol ; 89(3): 527-41, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24784488

ABSTRACT

Xylem sap (XS) is the first environment that xylem phytopathogens meet in planta during the early infection steps. Xanthomonas campestris pv. campestris (Xcc), the causative agent of Brassicaceae black rot, colonizes the plant xylem vessels to ensure its multiplication and dissemination. Besides suppression of plant immunity, Xcc has to adapt its metabolism to exploit plant-derived nutrients present in XS. To study Xcc behaviour in the early infection steps, we used cabbage XS to analyse bacterial growth. Mineral and organic composition of XS were determined. Significant growth of Xcc in XS was allowed by the rapid catabolism of amino acids, sugars and organic acids, and it was accompanied by the formation of biofilm-like structures. Transcriptome analysis of Xcc cultivated in XS using cDNA microarrays revealed a XS-specific transcriptional reprogramming compared to minimal or rich media. More specifically, up-regulation of genes encoding transporters such as TonB-dependent transporters (TBDTs), that could be associated with nutrient acquisition and detoxification, was observed. In agreement with the aggregation phenotype, expression of genes important for twitching motility and adhesion was up-regulated in XS. Taken together, our data show specific responses of Xcc to colonization of cabbage XS that could be important for the pathogenesis process and establish XS as a model medium to study mechanisms important for the early infection events.


Subject(s)
Brassica/microbiology , Gene Expression Regulation, Bacterial , Xanthomonas campestris/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Phenotype , Transcriptome , Virulence , Xanthomonas campestris/growth & development , Xanthomonas campestris/metabolism , Xanthomonas campestris/pathogenicity , Xylem/microbiology
16.
Methods Mol Biol ; 1072: 391-405, 2014.
Article in English | MEDLINE | ID: mdl-24136537

ABSTRACT

Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.


Subject(s)
Plant Exudates/metabolism , Proteomics/methods , Xylem/metabolism , Brassicaceae/metabolism , Chromatography, Affinity , Computational Biology , Electrophoresis, Polyacrylamide Gel , Mass Spectrometry , Proteome/metabolism
17.
BMC Genomics ; 14: 761, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24195767

ABSTRACT

BACKGROUND: Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences. RESULTS: Comparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes. Notably, a deletion of 33 kbp affects flagellum biosynthesis in Xff 4834-R. The presence of a complete flagellar cluster was assessed in a collection of more than 300 strains representing different species and pathovars of Xanthomonas. Five percent of the tested strains presented a deletion in the flagellar cluster and were non-motile. Moreover, half of the Xff strains isolated from the same epidemic than 4834-R was non-motile and this ratio was conserved in the strains colonizing the next bean seed generations. CONCLUSIONS: This work describes the first genome of a Xanthomonas strain pathogenic on bean and reports the existence of non-motile xanthomonads belonging to different species and pathovars. Isolation of such Xff variants from a natural epidemic may suggest that flagellar motility is not a key function for in planta fitness.


Subject(s)
Flagella/genetics , Genetic Fitness , Plant Diseases/microbiology , Xanthomonas/genetics , Base Sequence , Evolution, Molecular , Fabaceae/genetics , Fabaceae/growth & development , Fabaceae/microbiology , Flagella/physiology , Genome, Bacterial , Phylogeny , Plant Diseases/genetics , Seeds/genetics , Seeds/microbiology , Sequence Analysis, DNA , Xanthomonas/classification , Xanthomonas/pathogenicity
18.
PLoS One ; 8(11): e79704, 2013.
Article in English | MEDLINE | ID: mdl-24278159

ABSTRACT

Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis scheme for epidemiological surveillance of this disease.


Subject(s)
Xanthomonas axonopodis/genetics , Genome, Bacterial/genetics , Minisatellite Repeats/genetics , Virulence/genetics , Xanthomonas axonopodis/pathogenicity
19.
PLoS One ; 8(8): e73469, 2013.
Article in English | MEDLINE | ID: mdl-23951354

ABSTRACT

Xanthomonas campestris pv. campestris (Xcc) colonizes the vascular system of Brassicaceae and ultimately causes black rot. In susceptible Arabidopsis plants, XopAC type III effector inhibits by uridylylation positive regulators of the PAMP-triggered immunity such as the receptor-like cytoplasmic kinases (RLCK) BIK1 and PBL1. In the resistant ecotype Col-0, xopAC is a major avirulence gene of Xcc. In this study, we show that both the RLCK interaction domain and the uridylyl transferase domain of XopAC are required for avirulence. Furthermore, xopAC can also confer avirulence to both the vascular pathogen Ralstonia solanacearum and the mesophyll-colonizing pathogen Pseudomonas syringae indicating that xopAC-specified effector-triggered immunity is not specific to the vascular system. In planta, XopAC-YFP fusions are localized at the plasma membrane suggesting that XopAC might interact with membrane-localized proteins. Eight RLCK of subfamily VII predicted to be localized at the plasma membrane and interacting with XopAC in yeast two-hybrid assays have been isolated. Within this subfamily, PBL2 and RIPK RLCK genes but not BIK1 are important for xopAC-specified effector-triggered immunity and Arabidopsis resistance to Xcc.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Immunity/genetics , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Xanthomonas campestris/physiology , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , Bacterial Proteins/genetics , Cell Membrane/enzymology , Cell Membrane/genetics , Cytoplasm/enzymology , Cytoplasm/genetics , Genes, Reporter , Host-Pathogen Interactions , Luminescent Proteins/genetics , Plant Cells/metabolism , Plant Cells/microbiology , Plant Diseases/immunology , Plant Diseases/microbiology , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Pseudomonas syringae/physiology , Ralstonia solanacearum/physiology
20.
New Phytol ; 198(3): 899-915, 2013 May.
Article in English | MEDLINE | ID: mdl-23442088

ABSTRACT

Xylan is a major structural component of plant cell wall and the second most abundant plant polysaccharide in nature. Here, by combining genomic and functional analyses, we provide a comprehensive picture of xylan utilization by Xanthomonas campestris pv campestris (Xcc) and highlight its role in the adaptation of this epiphytic phytopathogen to the phyllosphere. The xylanolytic activity of Xcc depends on xylan-deconstruction enzymes but also on transporters, including two TonB-dependent outer membrane transporters (TBDTs) which belong to operons necessary for efficient growth in the presence of xylo-oligosaccharides and for optimal survival on plant leaves. Genes of this xylan utilization system are specifically induced by xylo-oligosaccharides and repressed by a LacI-family regulator named XylR. Part of the xylanolytic machinery of Xcc, including TBDT genes, displays a high degree of conservation with the xylose-regulon of the oligotrophic aquatic bacterium Caulobacter crescentus. Moreover, it shares common features, including the presence of TBDTs, with the xylan utilization systems of Bacteroides ovatus and Prevotella bryantii, two gut symbionts. These similarities and our results support an important role for TBDTs and xylan utilization systems for bacterial adaptation in the phyllosphere, oligotrophic environments and animal guts.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Gene Expression Regulation, Bacterial , Xanthomonas campestris/genetics , Xanthomonas campestris/metabolism , Xylans/metabolism , Adaptation, Physiological , Animals , Bacterial Outer Membrane Proteins/metabolism , Bacteroides/metabolism , Brassica/microbiology , Caulobacter crescentus/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutation , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Operon , Phaseolus/microbiology , Symbiosis , Xanthomonas campestris/growth & development , Xanthomonas campestris/pathogenicity , Xylose/metabolism , Xylosidases/genetics , Xylosidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...