Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Rev ; 59(9): 298-306, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11570434

ABSTRACT

Recently, the American Heart Association published a revision of its dietary guidelines. The recommendations are based on new scientific findings, and address the contribution of growing rates of obesity, hypertension, and diabetes to heart disease in the United States. The guidelines for the general public are similar to dietary recommendations made by other health-related groups and government agencies and, therefore, place a greater emphasis on the adoption of healthy eating patterns and behaviors rather than a singular focus on dietary fat intake.


Subject(s)
Diet/standards , Heart Diseases/diet therapy , Obesity/diet therapy , Cholesterol/blood , Exercise , Heart Diseases/prevention & control , Humans , Hypertension/prevention & control , Lipoproteins/blood , Obesity/prevention & control , Risk Factors
2.
J Nutr Biochem ; 12(4): 242-250, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11287220

ABSTRACT

In previous studies, sodium pivalate has been administered to rats in their drinking water (20 mmoles/L; equivalent to 0.3% of the diet) as a way to lower the concentration of carnitine in tissues and to produce a model of secondary carnitine deficiency. Although this level of supplementation results in a marked decrease in carnitine concentration in a variety of tissues, it does not produce the classical signs of carnitine deficiency (i.e., decreased fatty acid oxidation and ketogenesis). The present study was designed (1) to determine if increasing the level of pivalate supplementation (0.6, 1.0% of the diet) would further reduce the concentrations of total and free carnitine in rat tissues without altering growth or food intake, and (2) to examine the effect of length of feeding (4 vs. 8 weeks) on these variables. Male, Sprague-Dawley rats were randomly assigned to either a control (0.2% sodium bicarbonate) or experimental diet (0.3, 0.6, 1.0% sodium pivalate) for either four or eight weeks. Animals (n = 6/group) were housed in metabolic cages; food and water were provided ad libitum throughout the study. Supplementation with sodium pivalate did not alter water intake or urine output. Ingestion of a diet containing 1.0% pivalic acid decreased food intake (g/day; P < 0.05), final body weight (P < 0.007), and growth rate (P < 0.001) after four weeks. The concentration of total carnitine in plasma, heart, liver, muscle, and kidney was reduced in all experimental groups (P < 0.001), regardless of level of supplementation or length of feeding. The concentration of free carnitine in heart, muscle, and kidney was also reduced (P < 0.001) in rats treated with pivalate for either four or eight weeks. The concentration of free carnitine in liver was reduced in animals supplemented with pivalate for eight weeks (P < 0.05), but no effect was observed in livers from rats treated for four weeks. Excretion of total carnitine and short chain acylcarnitine in urine was increased in pivalate supplemented rats throughout the entire feeding period (P < 0.001). Free carnitine excretion was increased during Weeks 1 and 2 (P < 0.01), but began to decline during Week 3 in experimental groups. During Weeks 6 and 8, free carnitine excretion in pivalate supplemented rats was less than that of control animals (P < 0.01). In summary, no further reduction in tissue carnitine concentration was observed when rats were supplemented with sodium pivalate at levels greater than 0.3% of the diet. Food intake (g/day) and growth were decreased in rats fed a diet containing 1.0% sodium pivalate. These data indicate that maximal lowering of tissue carnitine concentrations is achieved by feeding diets containing 0.3% sodium pivalate or less.

SELECTION OF CITATIONS
SEARCH DETAIL
...