Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Struct Biol ; 207(2): 136-157, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31071428

ABSTRACT

To understand mineral transport pathways for shell secretion and to assess differences in cellular activity during mineralization, we imaged with TEM and FE-SEM ultrastructural characteristics of outer mantle epithelium (OME) cells. Imaging was carried out on Magellania venosa shells embedded/etched, chemically fixed/decalcified and high-pressure frozen/freeze-substituted samples from the commissure, central shell portions and from puncta. Imaging results are complemented with morphometric evaluations of volume fractions of membrane-bound organelles. At the commissure the OME consists of several layers of cells. These cells form oblique extensions that, in cross-section, are round below the primary layer and flat underneath fibres. At the commissure the OME is multi-cell layered, in central shell regions it is single-cell layered. When actively secreting shell carbonate extrapallial space is lacking, because OME cells are in direct contact with the calcite of the forming fibres. Upon termination of secretion, OME cells attach via apical hemidesmosomes to extracellular matrix membranes that line the proximal surface of fibres. At the commissure volume fractions for vesicles, mitochondria and lysosomes are higher relative to single-cell layered regions, whereas for endoplasmic-reticulum and Golgi apparatus there is no difference. FE-SEM, TEM imaging reveals the lack of extrapallial space between OME cells and developing fibres. In addition, there is no indication for an amorphous precursor within fibres when these are in active secretion mode. Accordingly, our results do not support transport of minerals by vesicles from cells to sites of mineralization, rather by transfer of carbonate ions via transport mechanisms associated with OME cell membranes.


Subject(s)
Animal Shells/metabolism , Calcification, Physiologic/genetics , Epithelial Cells/metabolism , Invertebrates/metabolism , Animals , Biological Transport , Biomineralization , Calcium Carbonate/chemistry , Calcium Carbonate/metabolism , Epithelial Cells/chemistry
2.
J Microencapsul ; 31(8): 738-45, 2014.
Article in English | MEDLINE | ID: mdl-24963954

ABSTRACT

Perfluorodecalin (PFD) is an established artificial oxygen carrier due to its physical capability to solve the respiratory gases oxygen and carbon dioxide. PFD-filled poly(n-butyl-cyanoacrylate) (PACA) nanocapsules are already discussed as effective artificial oxygen carriers, and their principal suitability for intravenous administration had been shown. To further elucidate their action in vivo, it is imperative to characterise their preclinical safety and particularly their biodistribution. For these purposes, intravital fluorescence microscopy would display an attractive technique in order to monitor the PACA nanocapsules in vivo, but unfortunately, it is impossible to stain the PACA nanocapsules with a fluorescent dye fulfilling special criteria required for in vivo microscopy. In order to develop such a dye, a long-chained fluorinated thiol was used to modify a BODIPY derivative that is a highly fluorescent organic compound belonging to the difluoro-boraindacene family, as well as to functionalise mesoscopic systems, such as CdSe/ZnS-quantum dots and gold nanoparticles. Furthermore, a functionalisation of porphyrin derivatives was investigated by placing divalent ions in the centre of these systems. Due to the high solubility of all synthesised dyes in PFD, it should be possible to stain PFD-filled particles in general. However, only the functionalised BODIPY derivative was suitable for in vivo monitoring of the PFD-filled PACA nanocapsules.


Subject(s)
Boron Compounds , Fluorescent Dyes , Fluorocarbons , Quantum Dots/chemistry , Animals , Boron Compounds/chemistry , Boron Compounds/pharmacokinetics , Boron Compounds/pharmacology , Enbucrilate/chemistry , Enbucrilate/pharmacokinetics , Enbucrilate/pharmacology , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacokinetics , Fluorescent Dyes/pharmacology , Fluorocarbons/chemistry , Fluorocarbons/pharmacokinetics , Fluorocarbons/pharmacology , Male , Microscopy, Fluorescence , Rats , Rats, Wistar
3.
Mar Environ Res ; 70(3-4): 293-9, 2010.
Article in English | MEDLINE | ID: mdl-20619888

ABSTRACT

El Niño-Southern Oscillation (ENSO) is a global climate variablility, which fundamentally influences environmental patterns of the Humboldt Current System (HCS) off Chile and Peru. The surf clams Donax obesulus and Mesodesma donacium are dominant and highly productive bivalves of exposed sandy beaches of the HCS. Existing knowledge indicates that El Niño (EN, warm phase of ENSO) and La Niña (LN, cold phase of ENSO) affect populations of both species in a different way, although understanding of the mechanisms underlying these effects is still lacking. The aim of this study was to test hypotheses attempting to explain field observations on the effect of strong EN or LN events by using controlled experimental conditions. Growth and mortality rates of both species were registered during a four-week experiment under EN temperature conditions, normal temperature conditions and LN temperature conditions. While D. obesulus exhibited reduced growth and higher mortality under LN conditions, M. donacium showed reduced growth and higher mortality under EN conditions. The results clearly indicate different temperature tolerance windows for each species, possibly reflecting the evolutionary origins of the Donacidae and Mesodesmatidae in regions with contrasting temperature regimes. These results provide experimental support for previous hypotheses suggesting that thermal tolerance is the driving factor behind observed changes in the species distributions of D. obesulus and M. donacium during the extreme phases of ENSO.


Subject(s)
Bivalvia/physiology , Water Movements , Analysis of Variance , Animals , Bivalvia/growth & development , Demography , Mortality , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...