Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15818, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982209

ABSTRACT

The presence of donor-specific antibodies (DSA) such as antibodies directed against donor class I human leucocyte antigen (e.g., HLA-A) is a major barrier to kidney transplant success. As a proof of concept, functionalized magnetic nanoparticles have been designed to eliminate DSA from saline, blood and plasma of healthy donors and sensitized patients. Specific HLA-A1 protein was covalently bound to functionalized cobalt nanoparticles (fNP), human serum albumin (HSA) as control. fNP were added to anti-HLA class I-spiked saline, spiked volunteers' whole blood, and to whole blood and plasma of sensitized patients ex vivo. Anti-HLA-A1 antibody levels were determined with Luminex technology. Antibodies' median fluorescent intensity (MFI) was defined as the primary outcome. Furthermore, the impact of fNP treatment on blood coagulation and cellular uptake was determined. Treatment with fNP reduced MFI by 97 ± 2% and by 94 ± 4% (p < 0.001 and p = 0.001) in spiked saline and whole blood, respectively. In six known sensitized anti-HLA-A1 positive patients, a reduction of 65 ± 26% (p = 0.002) in plasma and 65 ± 33% (p = 0.012) in whole blood was achieved. No impact on coagulation was observed. A minimal number of nanoparticles was detected in peripheral mononuclear blood cells. The study demonstrates-in a first step-the feasibility of anti-HLA antibody removal using fNP. These pilot data might pave the way for a new personalized DSA removal technology in the future.


Subject(s)
Isoantibodies , Magnetite Nanoparticles , Humans , Magnetite Nanoparticles/chemistry , Isoantibodies/immunology , Isoantibodies/blood , Kidney Transplantation , Tissue Donors , Female , Proof of Concept Study , Male , Antibodies/immunology
2.
J Clin Med ; 8(7)2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31336977

ABSTRACT

Helicobacter pylori is a major human pathogen that causes a wide range of gastrointestinal pathology. Progression of H. pylori induced gastritis to more severe disease has been found to highly correlate with the array of virulence factors expressed by the pathogen. The objective of this study was twofold: first, to characterize the genetic diversity of H. pylori strains isolated from 41 non-atrophic gastritis patients in Switzerland, an issue that has not been investigated to date. And second, to assess the prevalence and sequence variation of H. pylori virulence factors (cagA, vacA, iceA and dupA) and genes encoding outer membrane proteins (OMPs; babA, babB, sabA, sabB, hopZ, hopQ and oipA) by whole genome sequencing (WGS) using an Illumina MiSeq platform. WGS identified high genetic diversity in the analyzed H. pylori strains. Most H. pylori isolates were assigned to hpEurope (95.0%, 39/41), and the remaining ones (5.0%, 2/41) to hpEastAsia, subpopulation hspEAsia. Analysis of virulence factors revealed that 43.9% of the strains were cagA-positive, and the vacA s1 allele was detected in 56.0% of the isolates. The presence of cagA was found to be significantly associated (P < 0.001) with the presence of vacA s1, babA2 and hopQ allele 1 as well as expression of oipA. Moreover, we found an association between the grade of gastritis and H. pylori abundance in the gastric mucosa, respectively and the presence of cagA, vacA s1 and hopQ allele 1. Among our 41 gastritis patients, we identified seven patients infected with H. pylori strains that carried a specific combination of virulence factors (i.e., cagA, vacA s1 allele and babA2 allele), recently implicated in the development of more severe gastrointestinal pathology, like peptic ulcer disease and even gastric cancer. To this end, WGS can be employed for rapid and detailed characterization of virulence determinants in H. pylori, providing valuable insights into the pathogenic capacity of the bacterium. This could ultimately lead to a higher level of personalized treatment and management of patients suffering from H. pylori associated infections.

3.
J Clin Med ; 8(1)2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30621024

ABSTRACT

Helicobacter pylori is a major human pathogen. Diagnosis of H. pylori infection and determination of its antibiotic susceptibility still mainly rely on culture and phenotypic drug susceptibility testing (DST) that is time-consuming and laborious. Whole genome sequencing (WGS) has recently emerged in medical microbiology as a diagnostic tool for reliable drug resistance prediction in bacterial pathogens. The aim of this study was to compare phenotypic DST results with the predictions based on the presence of genetic determinants identified in the H. pylori genome using WGS. Phenotypic resistance to clarithromycin, metronidazole, tetracycline, levofloxacin, and rifampicin was determined in 140 clinical H. pylori isolates by E-Test®, and the occurrence of certain single nucleotide polymorphisms (SNPs) in target genes was determined by WGS. Overall, there was a high congruence of >99% between phenotypic DST results for clarithromycin, levofloxacin, and rifampicin and SNPs identified in the 23S rRNA, gyrA, and rpoB gene. However, it was not possible to infer a resistance phenotype for metronidazole based on the occurrence of distinct SNPs in frxA and rdxA. All 140 H. pylori isolates analysed in this study were susceptible to tetracycline, which was in accordance with the absence of double or triple nucleotide substitutions in the 16S rRNA gene.

SELECTION OF CITATIONS
SEARCH DETAIL
...