Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38802684

ABSTRACT

The ε4 allele of the APOE gene heightens the risk of late onset Alzheimer's disease. ε4 carriers, may exhibit cognitive and neural changes early on. Given the known memory-enhancing effects of physical exercise, particularly through hippocampal plasticity via endocannabinoid signaling, here we aimed to test whether a single session of physical exercise may benefit memory and underlying neurophysiological processes in young ε3 carriers (ε3/ε4 heterozygotes, risk group) compared with a matched control group (homozygotes for ε3). Participants underwent fMRI while learning picture sequences, followed by cycling or rest before a memory test. Blood samples measured endocannabinoid levels. At the behavioral level, the risk group exhibited poorer associative memory performance, regardless of the exercising condition. At the brain level, the risk group showed increased medial temporal lobe activity during memory retrieval irrespective of exercise (suggesting neural compensatory effects even at baseline), whereas, in the control group, such increase was only detectable after physical exercise. Critically, an exercise-related endocannabinoid increase correlated with task-related hippocampal activation in the control group only. In conclusion, healthy young individuals carrying the ε4 allele may present suboptimal associative memory performance (when compared with homozygote ε3 carriers), together with reduced plasticity (and functional over-compensation) within medial temporal structures.


Subject(s)
Alzheimer Disease , Exercise , Magnetic Resonance Imaging , Humans , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnostic imaging , Male , Female , Exercise/physiology , Adult , Young Adult , Memory/physiology , Endocannabinoids/genetics , Genetic Predisposition to Disease , Association Learning/physiology , Apolipoprotein E4/genetics , Hippocampus/diagnostic imaging , Hippocampus/physiology , Brain/diagnostic imaging , Brain/physiology , Heterozygote
2.
Sci Rep ; 11(1): 14371, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34257382

ABSTRACT

Regular physical exercise enhances memory functions, synaptic plasticity in the hippocampus, and brain derived neurotrophic factor (BDNF) levels. Likewise, short periods of exercise, or acute exercise, benefit hippocampal plasticity in rodents, via increased endocannabinoids (especially anandamide, AEA) and BDNF release. Yet, it remains unknown whether acute exercise has similar effects on BDNF and AEA levels in humans, with parallel influences on memory performance. Here we combined blood biomarkers, behavioral, and fMRI measurements to assess the impact of a single session of physical exercise on associative memory and underlying neurophysiological mechanisms in healthy male volunteers. For each participant, memory was tested after three conditions: rest, moderate or high intensity exercise. A long-term memory retest took place 3 months later. At both test and retest, memory performance after moderate intensity exercise was increased compared to rest. Memory after moderate intensity exercise correlated with exercise-induced increases in both AEA and BNDF levels: while AEA was associated with hippocampal activity during memory recall, BDNF enhanced hippocampal memory representations and long-term performance. These findings demonstrate that acute moderate intensity exercise benefits consolidation of hippocampal memory representations, and that endocannabinoids and BNDF signaling may contribute to the synergic modulation of underlying neural plasticity mechanisms.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Endocannabinoids/metabolism , Exercise , Hippocampus/physiology , Memory , Adolescent , Adult , Arachidonic Acids/biosynthesis , Behavior , Biomarkers/metabolism , Endocannabinoids/biosynthesis , Exercise Therapy , Heart Rate , Humans , Learning , Magnetic Resonance Imaging , Male , Neuronal Plasticity , Polyunsaturated Alkamides , Young Adult
3.
Sci Rep ; 10(1): 15322, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32948800

ABSTRACT

Acute physical exercise improves memory functions by increasing neural plasticity in the hippocampus. In animals, a single session of physical exercise has been shown to boost anandamide (AEA), an endocannabinoid known to promote hippocampal plasticity. Hippocampal neuronal networks encode episodic memory representations, including the temporal organization of elements, and can thus benefit motor sequence learning. While previous work established that acute physical exercise has positive effects on declarative memory linked to hippocampal plasticity mechanisms, its influence on memory for motor sequences, and especially on neural mechanisms underlying possible effects, has been less investigated. Here we studied the impact of acute physical exercise on motor sequence learning, and its underlying neurophysiological mechanisms in humans, using a cross-over randomized within-subjects design. We measured behavior, fMRI activity, and circulating AEA levels in fifteen healthy participants while they performed a serial reaction time task before and after a short period of exercise (moderate or high intensity) or rest. We show that exercise enhanced motor sequence memory, significantly for high intensity exercise and tending towards significance for moderate intensity exercise. This enhancement correlated with AEA increase, and dovetailed with local increases in caudate nucleus and hippocampus activity. These findings demonstrate that acute physical exercise promotes sequence learning, thus attesting the overarching benefit of exercise to hippocampus-related memory functions.


Subject(s)
Brain/physiology , Exercise/physiology , Memory/physiology , Adolescent , Adult , Arachidonic Acids/blood , Brain/diagnostic imaging , Endocannabinoids/blood , Exercise/psychology , Humans , Magnetic Resonance Imaging , Male , Nontherapeutic Human Experimentation , Polyunsaturated Alkamides/blood , Random Allocation , Reaction Time , Young Adult
5.
Cardiovasc Res ; 115(3): 602-613, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30295758

ABSTRACT

AIMS: Myocardial infarction (MI) leads to an enhanced release of endocannabinoids and a massive accumulation of neutrophils and monocytes within the ischaemic myocardium. These myeloid cells originate from haematopoietic precursors in the bone marrow and are rapidly mobilized in response to MI. We aimed to determine whether endocannabinoid signalling is involved in myeloid cell mobilization and cardiac recruitment after ischaemia onset. METHODS AND RESULTS: Intravenous administration of endocannabinoid 2-arachidonoylglycerol (2-AG) into wild type (WT) C57BL6 mice induced a rapid increase of blood neutrophil and monocyte counts as measured by flow cytometry. This effect was blunted when using cannabinoid receptor 2 knockout mice. In response to MI induced in WT mice, the lipidomic analysis revealed significantly elevated plasma and cardiac levels of the endocannabinoid 2-AG 24 h after infarction, but no changes in anandamide, palmitoylethanolamide, and oleoylethanolamide. This was a consequence of an increased expression of 2-AG synthesizing enzyme diacylglycerol lipase and a decrease of metabolizing enzyme monoacylglycerol lipase (MAGL) in infarcted hearts, as determined by quantitative RT-PCR analysis. The opposite mRNA expression pattern was observed in bone marrow. Pharmacological blockade of MAGL with JZL184 and thus increased systemic 2-AG levels in WT mice subjected to MI resulted in elevated cardiac CXCL1, CXCL2, and MMP9 protein levels as well as higher cardiac neutrophil and monocyte counts 24 h after infarction compared with vehicle-treated mice. Increased post-MI inflammation in these mice led to an increased infarct size, an impaired ventricular scar formation assessed by histology and a worsened cardiac function in echocardiography evaluations up to 21 days. Likewise, JZL184-administration in a myocardial ischaemia-reperfusion model increased cardiac myeloid cell recruitment and resulted in a larger fibrotic scar size. CONCLUSION: These findings suggest that changes in endocannabinoid gradients due to altered tissue levels contribute to myeloid cell recruitment from the bone marrow to the infarcted heart, with crucial consequences on cardiac healing and function.


Subject(s)
Arachidonic Acids/toxicity , Chemotaxis/drug effects , Endocannabinoids/toxicity , Glycerides/toxicity , Heart Failure/chemically induced , Myeloid Cells/drug effects , Myocardial Infarction/complications , Myocardium/metabolism , Neutrophil Infiltration/drug effects , Administration, Intravenous , Animals , Arachidonic Acids/administration & dosage , Arachidonic Acids/metabolism , Disease Models, Animal , Disease Progression , Endocannabinoids/administration & dosage , Endocannabinoids/metabolism , Female , Fibrosis , Glycerides/administration & dosage , Glycerides/metabolism , Heart Failure/metabolism , Heart Failure/physiopathology , Inflammation Mediators/metabolism , Mice, Inbred C57BL , Mice, Knockout , Monoacylglycerol Lipases/metabolism , Myeloid Cells/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/pathology , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Signal Transduction , Ventricular Remodeling/drug effects
6.
Int J Legal Med ; 132(6): 1675-1684, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29556718

ABSTRACT

Simultaneous assessment of a panel of protein markers is becoming essential in order to enhance biomarker research and improve diagnostics. Specifically, postmortem diagnostics of early myocardial ischemia in sudden cardiac death cases could benefit from a multiplex marker assessment in the same tissue section. Current analytical antibody-based techniques (immunohistochemistry and immunofluorescence) limit multiplex analysis usually to not more than three antibodies. In this study, mass spectrometry-immunohistochemistry (MS-IHC) was performed by combining laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with rare-metal-isotope-tagged antibodies as a technique for multiplex analysis of human postmortem myocardial tissue samples. Tissue sections with myocardial infarction were simultaneously analyzed for seven primary, rare-metal-isotope-tagged antibodies (troponin T, myoglobin, fibronectin, C5b-9, unphosphorylated connexin 43, VEGF-B, and JunB). Comparison between the MS-IHC approach and chromogenic IHC showed similar patterns in ionic and optical images. In addition, absolute quantification was performed by MS-IHC, providing a proportional relationship between the signal intensity and the local marker concentration in tissue sections. These data demonstrated that LA-ICP-MS combined with rare-metal-isotope-tagged antibodies is an efficient strategy for simultaneous testing of multiple markers and allows not only visualization of molecules within the tissue but also quantification of the signal. Such imaging approach has a great potential in both diagnostics and pathology-related research.


Subject(s)
Immunohistochemistry , Mass Spectrometry , Myocardial Infarction/metabolism , Biomarkers/metabolism , Complement Membrane Attack Complex/metabolism , Connexin 43/metabolism , Female , Forensic Pathology , Humans , Isotopes , Male , Mass Spectrometry/methods , Middle Aged , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myoglobin , Transcription Factors , Troponin T/metabolism , Vascular Endothelial Growth Factor B
7.
Eur J Clin Invest ; 48(2)2018 Feb.
Article in English | MEDLINE | ID: mdl-29178180

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) exacerbates the risk of death due to cardiovascular disease (CVD). Modifications to blood lipid metabolism which manifest as increases in circulating triglycerides and reductions in high-density lipoprotein (HDL) cholesterol are thought to contribute to increased risk. In CKD patients, higher HDL cholesterol levels were not associated with reduced mortality risk. Recent research has revealed numerous mechanisms by which HDL could favourably influence CVD risk. In this study, we compared plasma levels of sphingosine-1-phosphate (S1P), HDL-associated S1P (HDL-S1P) and HDL-mediated protection against oxidative stress between CKD and control patients. METHODS: High-density lipoprotein was individually isolated from 20 CKD patients and 20 controls. Plasma S1P, apolipoprotein M (apoM) concentrations, HDL-S1P content and the capacity of HDL to protect cardiomyocytes against doxorubicin-induced oxidative stress in vitro were measured. RESULTS: Chronic kidney disease patients showed a typical profile with significant reductions in plasma HDL cholesterol and albumin and an increase in triglycerides and pro-inflammatory cytokines (TNF-alpha and IL-6). Unexpectedly, HDL-S1P content (P = .001) and HDL cardioprotective capacity (P = .034) were increased significantly in CKD patients. Linear regression analysis of which factors could influence HDL-S1P content showed an independent, negative and positive association with plasma albumin and apoM levels, respectively. DISCUSSION: The novel and unexpected observation in this study is that uremic HDL is more effective than control HDL for protecting cardiomyocytes against oxidative stress. It is explained by its higher S1P content which we previously demonstrated to be the determinant of HDL-mediated cardioprotective capacity. Interestingly, lower concentrations of albumin in CKD are associated with higher HDL-S1P.


Subject(s)
Kidney Failure, Chronic/physiopathology , Lipoproteins, HDL/physiology , Lysophospholipids/metabolism , Oxidative Stress/physiology , Sphingosine/analogs & derivatives , Analysis of Variance , Apolipoproteins M/metabolism , Cardiotonic Agents/pharmacology , Cells, Cultured , Doxorubicin/pharmacology , Female , Humans , Interleukin-6/metabolism , Kidney Failure, Chronic/blood , Lipoproteins, HDL/pharmacology , Male , Middle Aged , Myocytes, Cardiac/drug effects , Serum Albumin/metabolism , Sphingosine/metabolism , Triglycerides/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Int J Cardiol ; 231: 1-5, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-27989579

ABSTRACT

BACKGROUND: Among endocannabinoid (EC)-related mediators, Oleoyl-ethanolamide (OEA) and Palmitoyl-ethanolamide (PEA), two endogenous PPARα agonists with lipolytic and anti-inflammatory action, respectively, are being actively investigated. Here, we assessed the potential association between plasma levels of PEA and OEA and coronary function in a cohort including normal, overweight, obese, and morbidly obese (MOB) individuals. METHODS: Myocardial perfusion and endothelium-related myocardial blood flow (MBF) responses to cold pressor test (CPT) and during pharmacological vasodilation with dipyridamole were measured with 13N-ammonia positron emission tomography/computed tomography. OEA and PEA were extracted from human plasma by liquid-liquid extraction, separated by liquid chromatography and quantified by mass spectrometry. Serum levels of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (VCAM-1) were measured by colorimetric enzyme-linked immunosorbent assay. RESULTS: Circulating levels of PEA and VCAM-1 were increased in MOB as compared to normal weight subjects. Circulating levels of OEA and PEA were associated with body mass index, but not with adhesion molecules. Increases of PEA levels were associated with and predictive of worsened coronary function in MOB and the overall cohort studied. CONCLUSION: Plasma levels of PEA are increased in MOB patients and associated with coronary dysfunction as a functional precursor of CAD process. Larger trials are needed to confirm PEA as a potential circulating biomarker of coronary dysfunction in both MOB patients and the general population.


Subject(s)
Coronary Artery Disease/blood , Coronary Vessels/physiopathology , Ethanolamines/blood , Obesity/blood , Palmitic Acids/blood , Regional Blood Flow/physiology , Vasoconstriction/physiology , Amides , Biomarkers/blood , Body Mass Index , Chromatography, Liquid , Coronary Artery Disease/diagnosis , Coronary Artery Disease/etiology , Coronary Circulation/physiology , Coronary Vessels/diagnostic imaging , Electrocardiography , Enzyme-Linked Immunosorbent Assay , Humans , Obesity/complications , Positron Emission Tomography Computed Tomography
9.
Int J Legal Med ; 131(2): 497-500, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27507011

ABSTRACT

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was performed to map elements in thin formalin-fixed paraffin-embedded tissue sections of two forensic cases with firearm and electrocution injuries, respectively. In both cases, histological examination of the wounded tissue regions revealed the presence of exogenous aggregates that may be interpreted as metallic depositions. The use of imaging LA-ICP-MS allowed us to unambiguously determine the elemental composition of the observed aggregates assisting the pathologist in case assessments. To the best of our knowledge, we demonstrate for the first time the use of imaging LA-ICP-MS as a complementary tool for forensic pathologists and toxicologists in order to map the presence of metals and other elements in thin tissue sections of post-mortem cases.


Subject(s)
Mass Spectrometry/methods , Skin/chemistry , Trace Elements/analysis , Adult , Electric Injuries/pathology , Humans , Lasers, Solid-State , Male , Middle Aged , Skin/pathology , Wounds, Gunshot/pathology
10.
Sci Rep ; 6: 25599, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27228348

ABSTRACT

Therapeutic cannabis administration is increasingly used in Western countries due to its positive role in several pathologies. Dronabinol or tetrahydrocannabinol (THC) pills, ethanolic cannabis tinctures, oromucosal sprays or table vaporizing devices are available but other cannabinoids forms can be used. Inspired by the illegal practice of dabbing of butane hashish oil (BHO), cannabinoids from cannabis were extracted with butane gas, and the resulting concentrate (BHO) was atomized with specific vaporizing devices. The efficiency of "cannavaping," defined as the "vaping" of liquid refills for e-cigarettes enriched with cannabinoids, including BHO, was studied as an alternative route of administration for therapeutic cannabinoids. The results showed that illegal cannavaping would be subjected to marginal development due to the poor solubility of BHO in commercial liquid refills (especially those with high glycerin content). This prevents the manufacture of liquid refills with high BHO concentrations adopted by most recreational users of cannabis to feel the psychoactive effects more rapidly and extensively. Conversely, "therapeutic cannavaping" could be an efficient route for cannabinoids administration because less concentrated cannabinoids-enriched liquid refills are required. However, the electronic device marketed for therapeutic cannavaping should be carefully designed to minimize potential overheating and contaminant generation.


Subject(s)
Cannabis/chemistry , Electronic Nicotine Delivery Systems/methods , Marijuana Smoking , Medical Marijuana/therapeutic use , Vaping/methods , Butanes/administration & dosage , Butanes/therapeutic use , Cannabinoids/administration & dosage , Cannabinoids/therapeutic use , Dronabinol/administration & dosage , Dronabinol/therapeutic use , Electronic Nicotine Delivery Systems/instrumentation , Feasibility Studies , Humans , Medical Marijuana/administration & dosage , Reproducibility of Results , Vaping/instrumentation
11.
Arterioscler Thromb Vasc Biol ; 36(5): 817-24, 2016 05.
Article in English | MEDLINE | ID: mdl-26966278

ABSTRACT

OBJECTIVE: The dyslipidemia of type 2 diabetes mellitus has multiple etiologies and impairs lipoprotein functionality, thereby increasing risk for cardiovascular disease. High-density lipoproteins (HDLs) have several beneficial effects, notably protecting the heart from myocardial ischemia. We hypothesized that glycation of HDL could compromise this cardioprotective effect. APPROACH AND RESULTS: We used in vitro (cardiomyocytes) and ex vivo (whole heart) models subjected to oxidative stress together with HDL isolated from diabetic patients and nondiabetic HDL glycated in vitro (methylglyoxal). Diabetic and in vitro glycated HDL were less effective (P<0.05) than control HDL in protecting from oxidative stress. Protection was significantly, inversely correlated with the degree of in vitro glycation (P<0.001) and the levels of hemoglobin A1c in diabetic patients (P<0.007). The ability to activate protective, intracellular survival pathways involving Akt, Stat3, and Erk1/2 was significantly reduced (P<0.05) using glycated HDL. Glycation reduced the sphingosine-1-phosphate (S1P) content of HDL, whereas the S1P concentrations of diabetic HDL were inversely correlated with hemoglobin A1c (P<0.005). The S1P contents of in vitro glycated and diabetic HDL were significantly, positively correlated (both <0.01) with cardiomyocyte survival during oxidative stress. Adding S1P to diabetic HDL increased its S1P content and restored its cardioprotective function. CONCLUSIONS: Our data demonstrate that glycation can reduce the S1P content of HDL, leading to increased cardiomyocyte cell death because of less effective activation of intracellular survival pathways. It has important implications for the functionality of HDL in diabetes mellitus because HDL-S1P has several beneficial effects on the vasculature.


Subject(s)
Diabetes Mellitus, Type 2/blood , Diabetic Cardiomyopathies/blood , Dyslipidemias/blood , Lipoproteins, HDL/blood , Lysophospholipids/blood , Myocytes, Cardiac/metabolism , Sphingosine/analogs & derivatives , Animals , Animals, Newborn , Case-Control Studies , Cell Survival , Cells, Cultured , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetic Cardiomyopathies/diagnosis , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/prevention & control , Dyslipidemias/diagnosis , Dyslipidemias/etiology , Genotype , Glycated Hemoglobin/metabolism , Glycosylation , Humans , Isolated Heart Preparation , Male , Mice, Inbred C57BL , Mice, Knockout , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/pathology , Oxidative Stress , Phenotype , RNA Interference , Rats, Wistar , Scavenger Receptors, Class B/deficiency , Scavenger Receptors, Class B/genetics , Scavenger Receptors, Class B/metabolism , Sphingosine/blood , Time Factors , Transfection
12.
Thromb Haemost ; 113(4): 838-50, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25413674

ABSTRACT

Paradoxically, morbid obesity was suggested to protect from cardiovascular co-morbidities as compared to overweight/obese patients. We hypothesise that this paradox could be inferred to modulation of the "endocannabinoid" system on systemic and subcutaneous adipose tissue (SAT) inflammation. We designed a translational project including clinical and in vitro studies at Geneva University Hospital. Morbid obese subjects (n=11) were submitted to gastric bypass surgery (GBS) and followed up for one year (post-GBS). Insulin resistance and circulating and SAT levels of endocannabinoids, adipocytokines and CC chemokines were assessed pre- and post-GBS and compared to a control group of normal and overweight subjects (CTL) (n=20). In vitro cultures with 3T3-L1 adipocytes were used to validate findings from clinical results. Morbid obese subjects had baseline lower insulin sensitivity and higher hs-CRP, leptin, CCL5 and anandamide (AEA) levels as compared to CTL. GBS induced a massive weight and fat mass loss, improved insulin sensitivity and lipid profile, decreased C-reactive protein, leptin, and CCL2 levels. In SAT, increased expression of resistin, CCL2, CCL5 and tumour necrosis factor and reduced MGLL were shown in morbid obese patients pre-GBS when compared to CTL. GBS increased all endocannabinoids and reduced adipocytokines and CC chemokines. In morbid obese SAT, inverse correlations independent of body mass index were shown between palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA) levels and inflammatory molecules. In vitro, OEA inhibited CCL2 secretion from adipocytes via ERK1/2 activation. In conclusion, GBS was associated with relevant clinical, metabolic and inflammatory improvements, increasing endocannabinoid levels in SAT. OEA directly reduced CCL2 secretion via ERK1/2 activation in adipocytes.


Subject(s)
Endocannabinoids/blood , Ethanolamines/blood , Gastric Bypass , Obesity, Morbid/surgery , Oleic Acids/blood , Panniculitis/prevention & control , Subcutaneous Fat/metabolism , 3T3-L1 Cells , Adipocytes/metabolism , Adipokines/blood , Adult , Animals , Case-Control Studies , Chemokine CCL2/blood , Chemokine CCL2/metabolism , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Hospitals, University , Humans , Inflammation Mediators/blood , Insulin Resistance , Lipids/blood , Longitudinal Studies , Male , Mice , Middle Aged , Obesity, Morbid/blood , Panniculitis/blood , Pilot Projects , Prospective Studies , Signal Transduction , Switzerland , Time Factors , Treatment Outcome , Weight Loss
13.
Drug Test Anal ; 6(1-2): 155-63, 2014.
Article in English | MEDLINE | ID: mdl-24173827

ABSTRACT

Some forensic and clinical circumstances require knowledge of the frequency of drug use. Care of the patient, administrative, and legal consequences will be different if the subject is a regular or an occasional cannabis smoker. To this end, 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) has been proposed as a criterion to help to distinguish between these two groups of users. However, to date this indicator has not been adequately assessed under experimental conditions. We carried out a controlled administration study of smoked cannabis with a placebo. Cannabinoid levels were determined in whole blood using tandem mass spectrometry. Significantly high differences in THCCOOH concentrations were found between the two groups when measured during the screening visit, prior to the smoking session, and throughout the day of the experiment. Receiver operating characteristic (ROC) curves were determined and two threshold criteria were proposed in order to distinguish between these groups: a free THCCOOH concentration below 3 µg/L suggested an occasional consumption (≤ 1 joint/week) while a concentration higher than 40 µg/L corresponded to a heavy use (≥ 10 joints/month). These thresholds were tested and found to be consistent with previously published experimental data. The decision threshold of 40 µg/L could be a cut-off for possible disqualification for driving while under the influence of cannabis. A further medical assessment and follow-up would be necessary for the reissuing of a driving license once abstinence from cannabis has been demonstrated. A THCCOOH level below 3 µg/L would indicate that no medical assessment is required.


Subject(s)
Cannabinoid Receptor Agonists/blood , Dronabinol/analogs & derivatives , Marijuana Smoking/blood , Adolescent , Adult , Dronabinol/blood , Humans , Substance Abuse Detection , Tandem Mass Spectrometry , Young Adult
14.
Anal Bioanal Chem ; 405(30): 9791-803, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24202191

ABSTRACT

A cross-over controlled administration study of smoked cannabis was carried out on occasional and heavy smokers. The participants smoked a joint (11% Δ9-tetrahydrocannabinol (THC)) or a matching placebo on two different occasions. Whole blood (WB) and oral fluid (OF) samples were collected before and up to 3.5 h after smoking the joints. Pharmacokinetic analyses were obtained from these data. Questionnaires assessing the subjective effects were administered to the subjects during each session before and after the smoking time period. THC, 11-hydroxy-THC (11-OH-THC) and 11-nor-9-carboxy-THC (THCCOOH) were analyzed in the blood by gas chromatography or liquid chromatography (LC)-tandem mass spectrometry (MS/MS). The determination of THC, THCCOOH, cannabinol (CBN), and Δ9-tetrahydrocannabinolic acid A (THC-A) was carried out on OF only using LC-MS/MS. In line with the widely accepted assumption that cannabis smoking results in a strong contamination of the oral cavity, we found that THC, and also THC-A, shows a sharp, high concentration peak just after smoking, with a rapid decrease in these levels within 3 h. No obvious differences were found between both groups concerning THC median maximum concentrations measured either in blood or in OF; these levels were equal to 1,338 and 1,041 µg/L in OF and to 82 and 94 µg/L in WB for occasional and heavy smokers, respectively. The initial WB THCCOOH concentration was much higher in regular smokers than in occasional users. Compared with the occasional smokers, the sensation of confusion felt by the regular smokers was much less while the feeling of intoxication remained almost unchanged.


Subject(s)
Chromatography, Liquid/methods , Dronabinol/blood , Marijuana Smoking , Saliva/chemistry , Substance Abuse Detection/methods , Adolescent , Adult , Cross-Over Studies , Dronabinol/metabolism , Dronabinol/pharmacokinetics , Gas Chromatography-Mass Spectrometry , Humans , Male , Tandem Mass Spectrometry , Time Factors , Tissue Distribution , Young Adult
15.
Drug Test Anal ; 5(9-10): 763-72, 2013.
Article in English | MEDLINE | ID: mdl-23682018

ABSTRACT

Because of the various matrices available for forensic investigations, the development of versatile analytical approaches allowing the simultaneous determination of drugs is challenging. The aim of this work was to assess a liquid chromatography-tandem mass spectrometry (LC-MS/MS) platform allowing the rapid quantification of colchicine in body fluids and tissues collected in the context of a fatal overdose. For this purpose, filter paper was used as a sampling support and was associated with an automated 96-well plate extraction performed by the LC autosampler itself. The developed method features a 7-min total run time including automated filter paper extraction (2 min) and chromatographic separation (5 min). The sample preparation was reduced to a minimum regardless of the matrix analyzed. This platform was fully validated for dried blood spots (DBS) in the toxic concentration range of colchicine. The DBS calibration curve was applied successfully to quantification in all other matrices (body fluids and tissues) except for bile, where an excessive matrix effect was found. The distribution of colchicine for a fatal overdose case was reported as follows: peripheral blood, 29 ng/ml; urine, 94 ng/ml; vitreous humour and cerebrospinal fluid, < 5 ng/ml; pericardial fluid, 14 ng/ml; brain, < 5 pg/mg; heart, 121 pg/mg; kidney, 245 pg/mg; and liver, 143 pg/mg. Although filter paper is usually employed for DBS, we report here the extension of this alternative sampling support to the analysis of other body fluids and tissues. The developed platform represents a rapid and versatile approach for drug determination in multiple forensic media.


Subject(s)
Body Fluids/chemistry , Colchicine/analysis , Colchicine/poisoning , Tandem Mass Spectrometry/methods , Tubulin Modulators/analysis , Tubulin Modulators/poisoning , Adult , Calibration , Chromatography, Liquid/methods , Colchicine/blood , Colchicine/cerebrospinal fluid , Dried Blood Spot Testing/methods , Filtration/instrumentation , Humans , Male , Paper , Sensitivity and Specificity , Specimen Handling/methods , Tubulin Modulators/blood , Tubulin Modulators/cerebrospinal fluid
16.
Bioanalysis ; 4(11): 1337-50, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22720652

ABSTRACT

BACKGROUND: Dried blood spots (DBS) sampling has gained popularity in the bioanalytical community as an alternative to conventional plasma sampling, as it provides numerous benefits in terms of sample collection and logistics. The aim of this work was to show that these advantages can be coupled with a simple and cost-effective sample pretreatment, with subsequent rapid LC-MS/MS analysis for quantitation of 15 benzodiazepines, six metabolites and three Z-drugs. For this purpose, a simplified offline procedure was developed that consisted of letting a 5-µl DBS infuse directly into 100 µl of MeOH, in a conventional LC vial. RESULTS: The parameters related to the DBS pretreatment, such as extraction time or internal standard addition, were investigated and optimized, demonstrating that passive infusion in a regular LC vial was sufficient to quantitatively extract the analytes of interest. The method was validated according to international criteria in the therapeutic concentration ranges of the selected compounds. CONCLUSION: The presented strategy proved to be efficient for the rapid analysis of the selected drugs. Indeed, the offline sample preparation was reduced to a minimum, using a small amount of organic solvent and consumables, without affecting the accuracy of the method. Thus, this approach enables simple and rapid DBS analysis, even when using a non-DBS-dedicated autosampler, while lowering the costs and environmental impact.


Subject(s)
Benzodiazepines/analysis , Chromatography, High Pressure Liquid , Dried Blood Spot Testing , Tandem Mass Spectrometry , Benzodiazepines/metabolism , Benzodiazepines/standards , Blood Specimen Collection/economics , Chromatography, High Pressure Liquid/standards , Humans , Methanol/chemistry , Tandem Mass Spectrometry/standards , Time Factors
17.
J Pharm Biomed Anal ; 54(2): 359-67, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-20864289

ABSTRACT

This paper illustrates the development of an automated system for the on-line bioanalysis of dried blood spots (on-line DBS). In this way, a prototype was designed for integration into a conventional LC/MS/MS, allowing the successive extraction of 30 DBS toward the analytical system without any sample pretreatment. The developed method was assessed for the DBS analysis of flurbiprofen (FLB) and its metabolite 4-hydroxyflurbiprofen (OH-FLB) in human whole blood (i.e. 5 µL). The automated procedure was fully validated based on international criteria and showed good precision, trueness, and linearity over the expected concentration range (from 10 to 1000 ng/mL and 100 to 10,000 ng/mL for OH-FLB and FLB respectively). Furthermore, the prototype showed good results in terms of recovery and carry-over. Stability of both analytes on filter paper was also investigated and the results suggested that DBS could be stored at ambient temperature for over 1 month. The on-line DBS automated system was then successfully applied to a pharmacokinetic study performed on healthy male volunteers after oral administration of a single 50-mg dose of FLB. Additionally, a comparison between finger capillary DBS and classic venous plasma concentrations was investigated. A good correlation was observed, demonstrating the complementarity of both sampling forms. The automated system described in this article represents an efficient tool for the LC/MS/MS analysis of DBS samples in many bioanalytical applications.


Subject(s)
Blood Chemical Analysis/methods , Flurbiprofen/pharmacokinetics , Tandem Mass Spectrometry/methods , Administration, Oral , Adsorption , Calibration , Chromatography, Liquid/methods , Desiccation , Drug Stability , Drug Storage , Flurbiprofen/administration & dosage , Flurbiprofen/blood , Guidelines as Topic , Humans , Male , Micropore Filters , Online Systems , Quality Control , Reference Standards , Reproducibility of Results , Specimen Handling/methods , Tablets
18.
Anal Bioanal Chem ; 396(7): 2523-32, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20063149

ABSTRACT

The objective of this work was to combine the advantages of the dried blood spot (DBS) sampling process with the highly sensitive and selective negative-ion chemical ionization tandem mass spectrometry (NICI-MS-MS) to analyze for recent antidepressants including fluoxetine, norfluoxetine, reboxetine, and paroxetine from micro whole blood samples (i.e., 10 microL). Before analysis, DBS samples were punched out, and antidepressants were simultaneously extracted and derivatized in a single step by use of pentafluoropropionic acid anhydride and 0.02% triethylamine in butyl chloride for 30 min at 60 degrees C under ultrasonication. Derivatives were then separated on a gas chromatograph coupled with a triple-quadrupole mass spectrometer operating in negative selected reaction monitoring mode for a total run time of 5 min. To establish the validity of the method, trueness, precision, and selectivity were determined on the basis of the guidelines of the "Société Française des Sciences et des Techniques Pharmaceutiques" (SFSTP). The assay was found to be linear in the concentration ranges 1 to 500 ng mL(-1) for fluoxetine and norfluoxetine and 20 to 500 ng mL(-1) for reboxetine and paroxetine. Despite the small sampling volume, the limit of detection was estimated at 20 pg mL(-1) for all the analytes. The stability of DBS was also evaluated at -20 degrees C, 4 degrees C, 25 degrees C, and 40 degrees C for up to 30 days. Furthermore, the method was successfully applied to a pharmacokinetic investigation performed on a healthy volunteer after oral administration of a single 40-mg dose of fluoxetine. Thus, this validated DBS method combines an extractive-derivative single step with a fast and sensitive GC-NICI-MS-MS technique. Using microliter blood samples, this procedure offers a patient-friendly tool in many biomedical fields such as checking treatment adherence, therapeutic drug monitoring, toxicological analyses, or pharmacokinetic studies.


Subject(s)
Antidepressive Agents/blood , Blood Chemical Analysis/methods , Gas Chromatography-Mass Spectrometry/methods , Illicit Drugs/blood , Selective Serotonin Reuptake Inhibitors/blood , Spectrometry, Mass, Electrospray Ionization/methods , Substance Abuse Detection/methods , Anions , Blood Specimen Collection/methods , Desiccation , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...