Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Electromyogr Kinesiol ; 24(3): 437-44, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24726380

ABSTRACT

The aim of this study was to compare muscle force control and proprioception between conventional and new-generation experimental orthoses. Sixteen healthy subjects participated in a single-blind controlled trial in which two different types of orthosis were applied to the dominant knee or ankle, while the following variables were evaluated: muscle force control (accuracy), joint position sense, kinesthesia, static balance as well as subjective outcomes. The use of experimental orthoses resulted in better force accuracy during isometric knee extensions compared to conventional orthoses (P=0.005). Moreover, the use of experimental orthoses resulted in better force accuracy during concentric (P=0.010) and eccentric (P=0.014) ankle plantar flexions and better knee joint kinesthesia in the flexed position (P=0.004) compared to conventional orthoses. Subjective comfort (P<0.001) and preference scores were higher with experimental orthoses compared to conventional ones. In conclusion, orthosis type affected static and dynamic muscle force control, kinesthesia, and perceived comfort in healthy subjects. New-generation experimental knee and ankle orthoses may thus be recommended for prophylactic joint bracing during physical activity and to improve the compliance for orthosis use, particularly in patients who require long-term bracing.


Subject(s)
Ankle Joint/physiology , Braces , Isometric Contraction/physiology , Kinesthesis/physiology , Knee Joint/physiology , Muscle, Skeletal/physiology , Adult , Ankle , Equipment Design , Female , Humans , Male , Postural Balance/physiology , Range of Motion, Articular/physiology , Reference Values , Single-Blind Method , Young Adult
2.
J Electromyogr Kinesiol ; 24(2): 285-91, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24290027

ABSTRACT

The aim of this exploratory study was to verify whether the evaluation of quadriceps muscle weakness is influenced by the testing modality (isometric vs. isokinetic vs. isoinertial) and by the calculation method (within-subject vs. between-subject comparisons) in patients 4-8months after total knee arthroplasty (TKA, n=29) and total hip arthroplasty (THA, n=30), and in healthy controls (n=19). Maximal quadriceps strength was evaluated as (1) the maximal voluntary contraction (MVC) torque during an isometric contraction, (2) the peak torque during an isokinetic contraction, and (3) the one repetition maximum (1-RM) load during an isoinertial contraction. Muscle weakness was calculated as the difference between the involved and the uninvolved side (within-subject comparison) and as the difference between the involved side of patients and controls (between-subject comparison). Muscle weakness estimates were not significantly affected by the calculation method (within-subject vs. between-subject; P>0.05), whereas a significant main effect of testing modality (P<0.05) was observed. Isometric MVC torque provided smaller weakness estimates than isokinetic peak torque (P=0.06) and isoinertial 1-RM load (P=0.008), and the clinical occurrence of weakness (proportion of patients with large strength deficits) was also lower for MVC torque. These results have important implications for the evaluation of quadriceps muscle weakness in TKA and THA patients 4-8months after surgery.


Subject(s)
Arthroplasty, Replacement, Hip/methods , Arthroplasty, Replacement, Knee/methods , Isometric Contraction/physiology , Muscle Weakness/physiopathology , Muscle, Skeletal/physiology , Quadriceps Muscle/physiology , Aged , Female , Humans , Male , Middle Aged , Muscle Strength Dynamometer , Reproducibility of Results , Torque
3.
J Electromyogr Kinesiol ; 23(6): 1283-8, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24113423

ABSTRACT

Reliability of isometric, isokinetic and isoinertial modalities for quadriceps strength evaluation, and the relation between quadriceps strength and physical function was investigated in 29 total knee arthroplasty (TKA) patients, with an average age of 63 years. Isometric maximal voluntary contraction torque, isokinetic peak torque, and isoinertial one-repetition maximum load of the involved and uninvolved quadriceps were evaluated as well as objective (walking parameters) and subjective physical function (WOMAC). Reliability was good and comparable for the isometric, isokinetic, and isoinertial strength outcomes on both sides (intraclass correlation coefficient range: 0.947-0.966; standard error of measurement range: 5.1-9.3%). Involved quadriceps strength was significantly correlated to walking speed (r range: 0.641-0.710), step length (r range: 0.685-0.820) and WOMAC function (r range: 0.575-0.663), independent from the modality (P < 0.05). Uninvolved quadriceps strength was also significantly correlated to walking speed (r range: 0.413-0.539), step length (r range: 0.514-0.608) and WOMAC function (r range: 0.374-0.554) (P < 0.05), except for WOMAC function/isokinetic peak torque (P > 0.05). In conclusion, isometric, isokinetic, and isoinertial modalities ensure valid and reliable assessment of quadriceps muscle strength in TKA patients.


Subject(s)
Arthroplasty, Replacement, Knee/rehabilitation , Isometric Contraction/physiology , Muscle Strength/physiology , Quadriceps Muscle/physiopathology , Female , Humans , Male , Middle Aged , Muscle Strength Dynamometer , Quadriceps Muscle/physiology , Reproducibility of Results , Surveys and Questionnaires , Torque , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...