Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Vaccines ; 9(1): 58, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467663

ABSTRACT

Vaccine priming immunogens that activate germline precursors for broadly neutralizing antibodies (bnAbs) have promise for development of precision vaccines against major human pathogens. In a clinical trial of the eOD-GT8 60mer germline-targeting immunogen, higher frequencies of vaccine-induced VRC01-class bnAb-precursor B cells were observed in the high dose compared to the low dose group. Through immunoglobulin heavy chain variable (IGHV) genotyping, statistical modeling, quantification of IGHV1-2 allele usage and B cell frequencies in the naive repertoire for each trial participant, and antibody affinity analyses, we found that the difference between dose groups in VRC01-class response frequency was best explained by IGHV1-2 genotype rather than dose and was most likely due to differences in IGHV1-2 B cell frequencies for different genotypes. The results demonstrate the need to define population-level immunoglobulin allelic variations when designing germline-targeting immunogens and evaluating them in clinical trials.

2.
STAR Protoc ; 4(4): 102576, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37733596

ABSTRACT

The lymph node (LN) is a critical biological site for immune maturation after vaccination as it includes several cell populations critical for priming the antibody response. Here, we present a protocol for sampling the LN and isolating cell populations to evaluate immunogens targeting germline cells. We describe steps for media and tube preparation and sample collection using an ultrasound-guided LN fine-needle aspiration procedure. This protocol is safe, quick, low-cost, and less invasive than excisional biopsy. For complete details on the use and execution of this protocol, please refer to Leggat et al. (2022).1.


Subject(s)
Germinal Center , Lymph Nodes , Humans , Biopsy, Fine-Needle , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Vaccination , Ultrasonography, Interventional
3.
Sci Transl Med ; 15(697): eadf3309, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37224227

ABSTRACT

The engineered outer domain germline targeting version 8 (eOD-GT8) 60-mer nanoparticle was designed to prime VRC01-class HIV-specific B cells that would need to be matured, through additional heterologous immunizations, into B cells that are able to produce broadly neutralizing antibodies. CD4 T cell help will be critical for the development of such high-affinity neutralizing antibody responses. Thus, we assessed the induction and epitope specificities of the vaccine-specific T cells from the IAVI G001 phase 1 clinical trial that tested immunization with eOD-GT8 60-mer adjuvanted with AS01B. Robust polyfunctional CD4 T cells specific for eOD-GT8 and the lumazine synthase (LumSyn) component of eOD-GT8 60-mer were induced after two vaccinations with either the 20- or 100-microgram dose. Antigen-specific CD4 T helper responses to eOD-GT8 and LumSyn were observed in 84 and 93% of vaccine recipients, respectively. CD4 helper T cell epitope "hotspots" preferentially targeted across participants were identified within both the eOD-GT8 and LumSyn proteins. CD4 T cell responses specific to one of these three LumSyn epitope hotspots were observed in 85% of vaccine recipients. Last, we found that induction of vaccine-specific peripheral CD4 T cells correlated with expansion of eOD-GT8-specific memory B cells. Our findings demonstrate strong human CD4 T cell responses to an HIV vaccine candidate priming immunogen and identify immunodominant CD4 T cell epitopes that might improve human immune responses either to heterologous boost immunogens after this prime vaccination or to other human vaccine immunogens.


Subject(s)
AIDS Vaccines , HIV Infections , Humans , T-Lymphocytes, Helper-Inducer , Epitopes , Germ Cells , HIV Antigens , Immunodominant Epitopes , HIV Infections/prevention & control
4.
medRxiv ; 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36993183

ABSTRACT

Vaccine priming immunogens that activate germline precursors for broadly neutralizing antibodies (bnAbs) have promise for development of precision vaccines against major human pathogens. In a clinical trial of the eOD-GT8 60mer germline-targeting immunogen, higher frequencies of vaccine-induced VRC01-class bnAb-precursor B cells were observed in the high dose compared to the low dose group. Through immunoglobulin heavy chain variable (IGHV) genotyping, statistical modeling, quantification of IGHV1-2 allele usage and B cell frequencies in the naive repertoire for each trial participant, and antibody affinity analyses, we found that the difference between dose groups in VRC01-class response frequency was best explained by IGHV1-2 genotype rather than dose and was most likely due to differences in IGHV1-2 B cell frequencies for different genotypes. The results demonstrate the need to define population-level immunoglobulin allelic variations when designing germline-targeting immunogens and evaluating them in clinical trials. One-Sentence Summary: Human genetic variation can modulate the strength of vaccine-induced broadly neutralizing antibody precursor B cell responses.

5.
J Infect Dis ; 215(1): 95-104, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28077588

ABSTRACT

BACKGROUND: We report the first-in-human safety and immunogenicity assessment of a prototype intranasally administered, replication-competent Sendai virus (SeV)-vectored, human immunodeficiency virus type 1 (HIV-1) vaccine. METHODS: Sixty-five HIV-1-uninfected adults in Kenya, Rwanda, and the United Kingdom were assigned to receive 1 of 4 prime-boost regimens (administered at 0 and 4 months, respectively; ratio of vaccine to placebo recipients, 12:4): priming with a lower-dose SeV-Gag given intranasally, followed by boosting with an adenovirus 35-vectored vaccine encoding HIV-1 Gag, reverse transcriptase, integrase, and Nef (Ad35-GRIN) given intramuscularly (SLA); priming with a higher-dose SeV-Gag given intranasally, followed by boosting with Ad35-GRIN given intramuscularly (SHA); priming with Ad35-GRIN given intramuscularly, followed by boosting with a higher-dose SeV-Gag given intranasally (ASH); and priming and boosting with a higher-dose SeV-Gag given intranasally (SHSH). RESULTS: All vaccine regimens were well tolerated. Gag-specific IFN-γ enzyme-linked immunospot-determined response rates and geometric mean responses were higher (96% and 248 spot-forming units, respectively) in groups primed with SeV-Gag and boosted with Ad35-GRIN (SLA and SHA) than those after a single dose of Ad35-GRIN (56% and 54 spot-forming units, respectively) or SeV-Gag (55% and 59 spot-forming units, respectively); responses persisted for ≥8 months after completion of the prime-boost regimen. Functional CD8+ T-cell responses with greater breadth, magnitude, and frequency in a viral inhibition assay were also seen in the SLA and SHA groups after Ad35-GRIN boost, compared with those who received either vaccine alone. SeV-Gag did not boost T-cell counts in the ASH group. In contrast, the highest Gag-specific antibody titers were seen in the ASH group. Mucosal antibody responses were sporadic. CONCLUSIONS: SeV-Gag primed functional, durable HIV-specific T-cell responses and boosted antibody responses. The prime-boost sequence appears to determine which arm of the immune response is stimulated. CLINICAL TRIALS REGISTRATION: NCT01705990.


Subject(s)
AIDS Vaccines/adverse effects , AIDS Vaccines/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/prevention & control , HIV-1/immunology , Sendai virus/genetics , Vaccines, DNA/adverse effects , Vaccines, DNA/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , Administration, Intranasal , Adult , Female , Genes, Viral/immunology , Genetic Vectors , HIV Antibodies/blood , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/genetics , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Immunogenicity, Vaccine , Kenya , Male , Middle Aged , Rwanda , Sendai virus/immunology , Sendai virus/physiology , United Kingdom , Vaccines, DNA/administration & dosage , Virus Replication
6.
Ann Intern Med ; 164(5): 313-22, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26833336

ABSTRACT

BACKGROUND: A prophylactic HIV-1 vaccine is a global health priority. OBJECTIVE: To assess a novel vaccine platform as a prophylactic HIV-1 regimen. DESIGN: Randomized, double-blind, placebo-controlled trial. Both participants and study personnel were blinded to treatment allocation. (ClinicalTrials.gov: NCT01215149). SETTING: United States, East Africa, and South Africa. PATIENTS: Healthy adults without HIV infection. INTERVENTION: 2 HIV-1 vaccines (adenovirus serotype 26 with an HIV-1 envelope A insert [Ad26.EnvA] and adenovirus serotype 35 with an HIV-1 envelope A insert [Ad35.Env], both administered at a dose of 5 × 1010 viral particles) in homologous and heterologous combinations. MEASUREMENTS: Safety and immunogenicity and the effect of baseline vector immunity. RESULTS: 217 participants received at least 1 vaccination, and 210 (>96%) completed follow-up. No vaccine-associated serious adverse events occurred. All regimens were generally well-tolerated. All regimens elicited humoral and cellular immune responses in nearly all participants. Preexisting Ad26- or Ad35-neutralizing antibody titers had no effect on vaccine safety and little effect on immunogenicity. In both homologous and heterologous regimens, the second vaccination significantly increased EnvA antibody titers (approximately 20-fold from the median enzyme-linked immunosorbent assay titers of 30-300 to 3000). The heterologous regimen of Ad26-Ad35 elicited significantly higher EnvA antibody titers than Ad35-Ad26. T-cell responses were modest and lower in East Africa than in South Africa and the United States. LIMITATIONS: Because the 2 envelope inserts were not identical, the boosting responses were complex to interpret. Durability of the immune responses elicited beyond 1 year is unknown. CONCLUSION: Both vaccines elicited significant immune responses in all populations. Baseline vector immunity did not significantly affect responses. Second vaccinations in all regimens significantly boosted EnvA antibody titers, although vaccine order in the heterologous regimen had a modest effect on the immune response. PRIMARY FUNDING SOURCE: International AIDS Vaccine Initiative, National Institutes of Health, Ragon Institute, Crucell Holland.


Subject(s)
AIDS Vaccines/adverse effects , AIDS Vaccines/immunology , HIV Infections/prevention & control , HIV-1 , Adenoviridae , Adolescent , Adult , Africa, Eastern , Antibody Formation , Double-Blind Method , Enzyme-Linked Immunosorbent Assay , Female , Genetic Vectors , HIV-1/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Male , Middle Aged , South Africa , United States , Young Adult
7.
J Virol ; 83(14): 7337-48, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19439467

ABSTRACT

The development of a rapid and efficient system to identify human immunodeficiency virus type 1 (HIV-1)-infected individuals with broad and potent HIV-1-specific neutralizing antibody responses is an important step toward the discovery of critical neutralization targets for rational AIDS vaccine design. In this study, samples from HIV-1-infected volunteers from diverse epidemiological regions were screened for neutralization responses using pseudovirus panels composed of clades A, B, C, and D and circulating recombinant forms (CRFs). Initially, 463 serum and plasma samples from Australia, Rwanda, Uganda, the United Kingdom, and Zambia were screened to explore neutralization patterns and selection ranking algorithms. Samples were identified that neutralized representative isolates from at least four clade/CRF groups with titers above prespecified thresholds and ranked based on a weighted average of their log-transformed neutralization titers. Linear regression methods selected a five-pseudovirus subset, representing clades A, B, and C and one CRF01_AE, that could identify top-ranking samples with 50% inhibitory concentration (IC(50)) neutralization titers of >or=100 to multiple isolates within at least four clade groups. This reduced panel was then used to screen 1,234 new samples from the Ivory Coast, Kenya, South Africa, Thailand, and the United States, and 1% were identified as elite neutralizers. Elite activity is defined as the ability to neutralize, on average, more than one pseudovirus at an IC(50) titer of 300 within a clade group and across at least four clade groups. These elite neutralizers provide promising starting material for the isolation of broadly neutralizing monoclonal antibodies to assist in HIV-1 vaccine design.


Subject(s)
Algorithms , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Adolescent , Adult , Africa/epidemiology , Aged , Female , HIV Antibodies/blood , HIV Infections/epidemiology , HIV Infections/virology , HIV-1/classification , HIV-1/isolation & purification , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Neutralization Tests , Thailand/epidemiology , United Kingdom/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...