Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 206(8): 1806-1816, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33811104

ABSTRACT

CD4+ T cells enable the critical B cell humoral immune protection afforded by most effective vaccines. We and others have recently identified an alternative source of help for B cells in mice, invariant NK T (iNKT) cells. iNKT cells are innate glycolipid-specific T cells restricted to the nonpolymorphic Ag-presenting molecule CD1d. As such, iNKT cells respond to glycolipids equally well in all people, making them an appealing adjuvant for universal vaccines. We tested the potential for the iNKT glycolipid agonist, α-galactosylceramide (αGC), to serve as an adjuvant for a known human protective epitope by creating a nanoparticle that delivers αGC plus antigenic polysaccharides from Streptococcus pneumoniae αGC-embedded nanoparticles activate murine iNKT cells and B cells in vitro and in vivo, facilitate significant dose sparing, and avoid iNKT anergy. Nanoparticles containing αGC plus S. pneumoniae polysaccharides elicits robust IgM and IgG in vivo and protect mice against lethal systemic S. pneumoniae However, codelivery of αGC via nanoparticles actually eliminated Ab protection elicited by a T-independent S. pneumoniae vaccine. This is consistent with previous studies demonstrating iNKT cell help for B cells following acute activation, but negative regulation of B cells during chronic inflammation. αGC-containing nanoparticles represent a viable platform for broadly efficacious vaccines against deadly human pathogens, but their potential for eliminating B cells under certain conditions suggests further clarity on iNKT cell interactions with B cells is warranted.


Subject(s)
B-Lymphocytes/immunology , Galactosylceramides/metabolism , Nanoparticles/metabolism , Natural Killer T-Cells/immunology , Pneumococcal Infections/immunology , Polysaccharides, Bacterial/metabolism , Streptococcal Vaccines/immunology , Streptococcus pneumoniae/immunology , Animals , Cells, Cultured , Galactosylceramides/immunology , Humans , Immunity, Humoral , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , Lymphocyte Activation , Mice , Polysaccharides, Bacterial/immunology , T-Lymphocytes/immunology
2.
Sci Rep ; 9(1): 11850, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31413341

ABSTRACT

Cholesterol oxidases are important enzymes with a wide range of applications from basic research to industry. In this study, we have discovered and described the first cell-associated cholesterol oxidase, ChoD, from Streptomyces lavendulae YAKB-15. This strain is a naturally high producer of ChoD, but only produces ChoD in a complex medium containing whole yeast cells. For characterization of ChoD, we acquired a draft genome sequence of S. lavendulae YAKB-15 and identified a gene product containing a flavin adenine dinucleotide binding motif, which could be responsible for the ChoD activity. The enzymatic activity was confirmed in vitro with histidine tagged ChoD produced in Escherichia coli TOP10, which lead to the determination of basic kinetic parameters with Km 15.9 µM and kcat 10.4/s. The optimum temperature and pH was 65 °C and 5, respectively. In order to increase the efficiency of production, we then expressed the cholesterol oxidase, choD, gene heterologously in Streptomyces lividans TK24 and Streptomyces albus J1074 using two different expression systems. In S. albus J1074, the ChoD activity was comparable to the wild type S. lavendulae YAKB-15, but importantly allowed production of ChoD without the presence of yeast cells.


Subject(s)
Cholesterol Oxidase/biosynthesis , Streptomyces/cytology , Streptomyces/enzymology , Hydrogen-Ion Concentration , Kinetics , Operon/genetics , Recombinant Proteins/metabolism , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...