Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 13(39): 9122-9128, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36162126

ABSTRACT

We present an efficient implementation of the coupled-cluster Green's function (CCGF) method for simulating photoemission spectra of periodic systems. We formulate the periodic CCGF approach with Brillouin zone sampling in the Gaussian basis at the coupled-cluster singles and doubles (CCSD) level. To enable CCGF calculations of realistic solids, we propose an active-space self-energy correction scheme by combining CCGF with the cheaper many-body perturbation theory (GW) and implement the model order reduction (MOR) frequency interpolation technique. We find that the active-space self-energy correction and MOR techniques significantly reduce the computational cost of CCGF while maintaining the high accuracy. We apply the developed CCGF approaches to compute spectral properties and band structure of silicon (Si) and zinc oxide (ZnO) crystals using triple-ζ Gaussian basis sets and medium-size k-point sampling and find good agreement with experimental measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...