Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 48(18): 10397-10412, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32946572

ABSTRACT

The RNA helicase RIG-I plays a key role in sensing pathogen-derived RNA. Double-stranded RNA structures bearing 5'-tri- or diphosphates are commonly referred to as activating RIG-I ligands. However, endogenous RNA fragments generated during viral infection via RNase L also activate RIG-I. Of note, RNase-digested RNA fragments bear a 5'-hydroxyl group and a 2',3'-cyclic phosphate. How endogenous RNA fragments activate RIG-I despite the lack of 5'-phosphorylation has not been elucidated. Here we describe an endogenous RIG-I ligand (eRL) that is derived from the internal transcribed spacer 2 region (ITS2) of the 45S ribosomal RNA after partial RNase A digestion in vitro, RNase A protein transfection or RNase L activation. The immunostimulatory property of the eRL is dependent on 2',3'-cyclic phosphate and its sequence is characterized by a G-quadruplex containing sequence motif mediating guanosine-5'-triphosphate (GTP) binding. In summary, RNase generated self-RNA fragments with 2',3'-cyclic phosphate function as nucleotide-5'-triphosphate binding aptamers activating RIG-I.


Subject(s)
DEAD Box Protein 58/genetics , RNA Helicases/genetics , RNA, Ribosomal/genetics , RNA/genetics , Guanosine Triphosphate/genetics , Humans , Ligands , Phosphates/metabolism , RNA/chemistry , RNA Helicases/metabolism , Receptors, Immunologic , Ribonucleases/genetics
2.
PLoS One ; 10(3): e0120498, 2015.
Article in English | MEDLINE | ID: mdl-25785446

ABSTRACT

TLR7 and TLR8 recognize RNA from pathogens and lead to subsequent immune stimulation. Here we demonstrate that a single naturally occurring 2'-O-methylation within a synthetic 18s rRNA derived RNA sequence prevents IFN-α production, however secretion of proinflammatory cytokines such as IL-6 is not impaired. By analysing TLR-deficient plasmacytoid dendritic cells and performing HEK293 genetic complementation assays we could demonstrate that the single 2'-O-methylation containing RNA still activated TLR8 but not TLR7. Therefore this specific 2'-O-ribose methylation in rRNA converts a TLR7/TLR8 ligand to an exclusively TLR8-specific ligand. Interestingly, other modifications at this position such as 2'-O-deoxy or 2'-fluoro had no strong modulating effect on TLR7 or TLR8 activation suggesting an important role of 2'-O-methylation for shaping differential TLR7 or TLR8 activation.


Subject(s)
RNA/chemistry , RNA/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/metabolism , Animals , HEK293 Cells , Humans , Interferon-alpha/biosynthesis , Interleukin-6/metabolism , Ligands , Methylation , Mice , RNA, Ribosomal, 18S/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...