Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Phys Rev Lett ; 109(22): 226601, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-23368143

ABSTRACT

It is well known that transport in lightly n-doped SrTiO(3) involves light and heavy electron bands. We have found that upon application of moderate quasi-isotropic pressures, the relative positions of these subbands are changed by a few meV and, eventually, a band inversion occurs at ~1 kbar. Such effects are, however, suppressed in the closely related KTaO(3) perovskite. We show that the extremely subtle electronic reconfiguration in SrTiO(3) is triggered by strain-induced structural transformations that are accompanied by remarkable mobility enhancements up to about Δµ/µ≈300%. Our results provide a microscopic rationale for the recently discovered transport enhancement under strain and underscore the role of the internal structural degrees of freedom in the modulation of the perovskite electronic properties.

2.
Phys Rev Lett ; 106(5): 057206, 2011 Feb 04.
Article in English | MEDLINE | ID: mdl-21405430

ABSTRACT

We demonstrate that the magnetization of a ferromagnet in contact with an antiferromagnetic multiferroic (LuMnO(3)) can be speedily reversed by electric-field pulsing, and the sign of the magnetic exchange bias can switch and recover isothermally. As LuMnO(3) is not ferroelastic, our data conclusively show that this switching is not mediated by strain effects but is a unique electric-field driven decoupling of the ferroelectric and antiferromagnetic domain walls. Their distinct dynamics are essential for the observed magnetic switching.

3.
Phys Rev Lett ; 97(22): 227201, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17155834

ABSTRACT

The magnetic exchange between epitaxial thin films of the multiferroic (antiferromagnetic and ferroelectric) hexagonal YMnO3 oxide and a soft ferromagnetic (FM) layer is used to couple the magnetic response of the FM layer to the magnetic state of the antiferromagnetic one. We will show that biasing the ferroelectric YMnO3 layer by an electric field allows control of the magnetic exchange bias and subsequently the magnetotransport properties of the FM layer. This finding may contribute to paving the way towards a new generation of electric-field controlled spintronic devices.

4.
Inorg Chem ; 40(14): 3526-33, 2001 Jul 02.
Article in English | MEDLINE | ID: mdl-11421701

ABSTRACT

The synthesis, structure, and physical characterization of two new radical salts formed with the organic donor bis(ethylenethia)tetrathiafulvalene (BET-TTF) and the octahedral anions hexacyanoferrate(III), [Fe(CN)(6)](3-), and nitroprusside, [Fe(CN)(5)NO](2-), are reported. These salts are (BET-TTF)(4)(NEt(4))(2)[Fe(CN)(6)] (1) (monoclinic space group C2/c with a = 38.867(7) A, b = 8.438(8) A, c = 11.239(6) A, beta = 90.994(9) degrees, V = 3685(4) A(3), Z = 4) and (BET-TTF)(2)[Fe(CN)(5)NO].CH(2)Cl(2) (2) (monoclinic space group C2/c with a = 16.237(6) A, b = 18.097(8) A, c = 12.663(7) A, beta = 106.016(9) degrees, V = 3576(3) A(3), Z = 4). In salt 1 the organic BET-TTF molecules are packed in orthogonal dimers, forming the first kappa phase observed for this donor. The analysis of the bond distances and the electronic and IR spectra suggests a degree of ionicity of 1/4 per BET-TTF molecule, in agreement with the stoichiometry of the salt. The electrical properties show that 1 is a semiconductor with a high room-temperature conductivity (11.6 S cm(-1)) and a low activation energy (45 meV), in agreement with the band structure calculations. The magnetic susceptibility of 1 shows, besides the paramagnetic contribution from the anion, a temperature-independent paramagnetism (TIP) of the Pauli type due to the electronic delocalization observed at high temperatures in the organic sublattice. This Pauli type paramagnetism is confirmed by the ESR spectra that also show a Dysonian line when the magnetic field is parallel to the conducting plane, typical of metallic and highly conducting systems. Salt 2 presents an unprecedented packing of the organic molecules that form zigzag tunnels where the anions and the solvent molecules are located. The stoichiometry indicates that all the BET-TTF molecules bear a charge of +1, and accordingly, 2 behaves as a semiconductor with a very low room-temperature conductivity. The magnetic properties of this salt indicate that the unpaired electrons on the organic molecules are strongly antiferromagnetically coupled, giving rise to a diamagnetic behavior of 2, as the nitroprusside anion is also diamagnetic.

5.
Nature ; 408(6811): 447-9, 2000 Nov 23.
Article in English | MEDLINE | ID: mdl-11100721

ABSTRACT

Crystal engineering--the planning and construction of crystalline supramolecular architectures from modular building blocks--permits the rational design of functional molecular materials that exhibit technologically useful behaviour such as conductivity and superconductivity, ferromagnetism and nonlinear optical properties. Because the presence of two cooperative properties in the same crystal lattice might result in new physical phenomena and novel applications, a particularly attractive goal is the design of molecular materials with two properties that are difficult or impossible to combine in a conventional inorganic solid with a continuous lattice. A promising strategy for creating this type of 'bi-functionality' targets hybrid organic/inorganic crystals comprising two functional sub-lattices exhibiting distinct properties. In this way, the organic pi-electron donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and its derivatives, which form the basis of most known molecular conductors and superconductors, have been combined with molecular magnetic anions, yielding predominantly materials with conventional semiconducting or conducting properties, but also systems that are both superconducting and paramagnetic. But interesting bulk magnetic properties fail to develop, owing to the discrete nature of the inorganic anions. Another strategy for achieving cooperative magnetism involves insertion of functional bulky cations into a polymeric magnetic anion, such as the bimetallic oxalato complex [MnIICrIII(C2O4)3]-, but only insoluble powders have been obtained in most cases. Here we report the synthesis of single crystals formed by infinite sheets of this magnetic coordination polymer interleaved with layers of conducting BEDT-TTF cations, and show that this molecule-based compound displays ferromagnetism and metallic conductivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...