Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38323486

ABSTRACT

Nontransgenic New Genomic Techniques (NGTs) have emerged as a promising tool for food industries, allowing food cultures to contribute to an innovative, safe, and more sustainable food system. NGTs have the potential to be applied to microorganisms, delivering on challenging performance traits like texture, flavour, and an increase of nutritional value. This paper brings insights on how nontransgenic NGTs applied to food cultures could be beneficial to the sector, enabling food industries to generate innovative, safe, and sustainable products for European consumers. Microorganisms derived from NGTs have the potentials of becoming an important contribution to achieve the ambitious targets set by the European 'Green Deal' and 'Farm to Fork' policies. To encourage the development of NGT-derived microorganisms, the current EU regulatory framework should be adapted. These technologies allow the introduction of a precise, minimal DNA modification in microbial genomes resulting in optimized products carrying features that could also be achieved by spontaneous natural genetic evolution. The possibility to use NGTs as a tool to improve food safety, sustainability, and quality is the bottleneck in food culture developments, as it currently relies on lengthy natural evolution strategies or on untargeted random mutagenesis.


Subject(s)
Food Industry , Genomics , Mutagenesis
2.
Int J Food Microbiol ; 383: 109951, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36240605

ABSTRACT

The application of non-Saccharomyces yeasts in beer as a natural tool for innovation, to create different aroma profiles and flavoured non-alcoholic beers, has attracted great interest from both researchers and commercial brewers. As a result, a higher diversity of non-Saccharomyces yeasts for beer production is expected on the market in the coming years. However, the safe use of non-Saccharomyces yeasts has not been broadly investigated and no guidance for the safety assessment of yeasts is published. The fundamentals of a safety assessment include an accurate taxonomic species identification using up-to date methods, along with a literature study regarding the yeast species in question. The strain-specific safety concerns that should be assessed involve pathogenic potential, antifungal resistance, production of biogenic amines and possible allergic reactions. However, yeast safety assessment is in its infancy compared to bacterial safety assessment and research is needed to set cut-off values for antifungal resistance, identify potential virulence genes and validate screening tools to assess yeast strains. Finally, the individual breweries are responsible for the safety related to the process in which yeasts are applied and throughout the shelf life of the beer. The application of non-Saccharomyces yeasts for industrial beer production is promising in terms of defining new prototypes and developing healthier and safer beers, but only if good food safety measures, i.e., both for the strain and the production process, are in place throughout the food value chain. In this way, the ancient role of yeasts in making beverages safer and thereby improving food safety is emphasized.


Subject(s)
Antifungal Agents , Beer , Beer/microbiology , Fermentation , Yeasts/genetics , Flavoring Agents/analysis
3.
FEMS Microbiol Lett ; 368(14)2021 07 15.
Article in English | MEDLINE | ID: mdl-34223876

ABSTRACT

Fermentation is one of if not the oldest food processing technique, yet it is still an emerging field when it comes to its numerous mechanisms of action and potential applications. The effect of microbial activity on the taste, bioavailability and preservation of the nutrients and the different food matrices has been deciphered by the insights of molecular microbiology. Among those roles of fermentation in the food chain, biopreservation remains the one most debated. Presumably because it has been underestimated for quite a while, and only considered - based on a food safety and technological approach - from the toxicological and chemical perspective. Biopreservation is not considered as a traditional use, where it has been by design - but forgotten - as the initial goal of fermentation. The 'modern' use of biopreservation is also slightly different from the traditional use, due mainly to changes in cooling of food and other ways of preservation, Extending shelf life is considered to be one of the properties of food additives, classifying - from our perspective - biopreservation wrongly and forgetting the role of fermentation and food cultures. The present review will summarize the current approaches of fermentation as a way to preserve and protect the food, considering the different way in which food cultures and this application could help tackle food waste as an additional control measure to ensure the safety of the food.


Subject(s)
Fermented Foods/microbiology , Food Microbiology , Food Preservation , Acids/metabolism , Anti-Bacterial Agents/metabolism , Antifungal Agents/metabolism , Bacteriocins/metabolism , Fermentation , Fermented Foods/analysis , Fermented Foods/standards , Food Safety , Killer Factors, Yeast/metabolism , Microbial Interactions
4.
Microorganisms ; 5(2)2017 May 23.
Article in English | MEDLINE | ID: mdl-28545249

ABSTRACT

The increased use of food cultures to ferment perishable raw materials has potentiated the need for regulations to assess and assure the safety of food cultures and their uses. These regulations differ from country to country, all aimed at assuring the safe use of food cultures which has to be guaranteed by the food culture supplier. Here we highlight national differences in regulations and review a list of methods and methodologies to assess the safety of food cultures at strain level, at production, and in the final product.

5.
Int J Food Microbiol ; 154(3): 87-97, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22257932

ABSTRACT

Microbial food cultures have directly or indirectly come under various regulatory frameworks in the course of the last decades. Several of those regulatory frameworks put emphasis on "the history of use", "traditional food", or "general recognition of safety". Authoritative lists of microorganisms with a documented use in food have therefore come into high demand. One such list was published in 2002 as a result of a joint project between the International Dairy Federation (IDF) and the European Food and Feed Cultures Association (EFFCA). The "2002 IDF inventory" has become a de facto reference for food cultures in practical use. However, as the focus mainly was on commercially available dairy cultures, there was an unmet need for a list with a wider scope. We present an updated inventory of microorganisms used in food fermentations covering a wide range of food matrices (dairy, meat, fish, vegetables, legumes, cereals, beverages, and vinegar). We have also reviewed and updated the taxonomy of the microorganisms used in food fermentations in order to bring the taxonomy in agreement with the current standing in nomenclature.


Subject(s)
Bacteria/metabolism , Fermentation , Food Microbiology , Fungi/metabolism , Bacterial Infections/etiology , Food/adverse effects , Food Handling/legislation & jurisprudence , Food Microbiology/legislation & jurisprudence , Food Preservation , Mycoses/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...