Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Phys ; 127(5): 054307, 2007 Aug 07.
Article in English | MEDLINE | ID: mdl-17688340

ABSTRACT

In this work, we have extended our previous high resolution study of the vacuum ultraviolet emission spectrum of the D2 molecule [M. Roudjane, et al. J. Chem. Phys. 125, 214305 (2006)] up to 124.2 nm in order to investigate the B' 1Sigmau+-->X 1Sigmag+ band system. The analysis of the spectrum has been carried out by means of a complex spectrum visual identification code IDEN [V. I. Azarov, Phys. Scr. 44, 528 (1991); 48, 656, (1993)] and supported by theoretical calculations using ab initio data [L. Wolniewicz, J. Chem. Phys. 103, 1792 (1995); 99, 1851 (1993); G. Staszewska and L. Wolniewicz, J. Mol. Spectrosc. 212, 208 (2002); L. Wolniewicz and G. Staszewska, 220, 45 (2003)] which provided level energies and transition probabilities. More than 1480 new emission lines have been observed and 109 bands belonging to the B' 1Sigmau+-->X 1Sigmag+ system have been identified between 84.1 and 121.6 nm. Except for the upsilon'-0 bands that were reported in absorption [I. Dabrowski and G. Herzberg, Can. J. Phys. 52, 1110 (1974)], all the upsilon'-upsilon" bands are reported here for the first time. The analysis led to the determination of 111 rovibronic energy levels in the B' 1Sigmau+ state, of which 31 with higher rotational numbers J are new. Observed perturbations are accounted for through a set of coupled equations involving the four excited electronic states B 1Sigmau+, B' 1Sigmau+, C 1Piu, and D 1Piu and including nonadiabatic couplings. The solution of this set provides the percent contribution of these four states to each of the observed rovibronic level.

2.
J Chem Phys ; 125(21): 214305, 2006 Dec 07.
Article in English | MEDLINE | ID: mdl-17166019

ABSTRACT

The emission spectrum of the D(2) molecule has been studied at high resolution in the vacuum ultraviolet region 78.5-102.7 nm. A detailed analysis of the two D (1)Pi(u)-->X (1)Sigma(g) (+) and D(') (1)Pi(u) (-)-->X (1)Sigma(g) (+) electronic band systems is reported. New and improved values of the level energies of the two upper states have been derived with the help of the program IDEN [V. I. Azarov, Phys. Scr. 44, 528 (1991); 48, 656 (1993)], originally developed for atomic spectral analysis. A detailed comparison is made between the observed energy levels and solutions of coupled equations using the newest ab initio potentials by Wolniewicz and co-workers [J. Chem. Phys. 103, 1792 (1995); 99, 1851 (1993); J. Mol. Spectros. 212, 208 (2002); 220, 45 (2003)] taking into account the nonadiabatic coupling terms for the D (1)Pi(u) state with the lowest electronic states B (1)Sigma(u) (+), C (1)Pi(u), and B(') (1)Sigma(u) (+). A satisfactory agreement has been found for most of the level energies belonging to the D and D(') states. The remaining differences between observation and theory are probably due to nonadiabatic couplings with other higher electronic states which were neglected in the calculations.

3.
J Chem Phys ; 123(10): 104302, 2005 Sep 08.
Article in English | MEDLINE | ID: mdl-16178592

ABSTRACT

The absorption spectrum of jet-cooled CH(3)Cl was photographed from 165 to 117 nm (or 60,000 - 85,000 cm(-1), 7.5-10.5 eV) at a resolution limit of 0.0008 nm (0.3-0.6 cm(-1) or 0.04-0.08 meV). Even in the best structured region of the spectrum, from 70,000 to 85,000 cm(-1) (8.7-10.5 eV), observed bandwidths (full width at half maximum) are large, from 50 to 150 cm(-1). No rotational feature could be resolved. The spectrum is dominated by two strong bands near 9 eV, 140 nm, the D and E bands of Mulliken [J. Chem. Phys. 8, 382 (1940)] or the spectral region D of Price [J. Chem. Phys.4, 539 (1936)]. Their relative intensity is incompatible with previous assignments, namely, to a triplet and a singlet state belonging to the same configuration. On the basis of the present ab initio calculations, those bands are now assigned to two singlet states, the (1)A(1) and (1)E excited states resulting from the 2e(3)4pe Rydberg configuration. The present calculations also reveal that the two (1)E states issued from 2e(3)4sa(1) and 2e(3)4pa(1) are quasidegenerate and strongly mixed. They should be assigned to the two broad bands near 8 eV, 160 nm, the B and C bands of Mulliken and Price. Three vibrational modes are observed to be active: the CCl bond stretch nu(3)(a(1)), and the CH(3) umbrella and rocking vibrations, respectively, nu(2)(a(1)) and nu(6)(e). The fundamental frequencies deduced are well within the ranges defined by the corresponding values in the neutral and ion ground states. The possibility of a dynamical Jahn-Teller effect induced by the nu(6)(e) vibrational mode in the (1)E Rydberg states is discussed.

4.
J Chem Phys ; 123(23): 234302, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16392915

ABSTRACT

Two new red-degraded bands in the room-temperature vacuum-ultraviolet absorption spectrum of carbon monoxide have been identified in the 94,000-94,500 cm(-1) energy region and analyzed. One of the bands at approximately 94,225 cm(-1) (106.1 nm) has three observable bandheads and is partially overlapped with the strong C 1Sigma+-X 1Sigma+ (1-0) transition at lower energy. It is assigned to the c 3Pi-X 1Sigma+ (1-0) transition. The other band at approximately 94,437 cm(-1) (105.9 nm) with one clear bandhead is assigned to the k 3Pi-X 1Sigma+ (5-0) transition. A strong homogeneous perturbation was found to exist between the two upper states that strongly influences the line positions and shapes of these bands. A rotational deperturbation analysis was performed and molecular rotational constants for both upper states were determined. These deperturbed molecular constants are entirely consistent with the expected values for the k 3Pi valence and c 3Pi Rydberg states. The Hamiltonian interaction term between these two states is found to be separable into vibrational and electronic factors and the electronic factor is determined to be H(e)=323+/-40 cm(-1). A discrepancy in the literature regarding the location of the c 3Pi (v=1) state is identified and discussed.

5.
J Chem Phys ; 121(1): 292-308, 2004 Jul 01.
Article in English | MEDLINE | ID: mdl-15260548

ABSTRACT

Rotationally cold absorption and two-photon ionization spectra of CO in the 90-100 nm region have been recorded at a resolution of 0.3-1.0 cm(-1). The analyses of up to four isotopomers seek to clarify the observations in regions where the Rydberg levels built on the ground state X (2)Sigma(+) of the ion interact with valence states of (1)Sigma(+) and (1)Pi symmetry. Previous observations of the 3ssigma, B (1)Sigma(+) Rydberg state, reviewed by Tchang-Brillet et al. [J. Chem. Phys. 96, 6735 (1992)], have been extended to energies above its avoided crossing with the repulsive part of the D(') (1)Sigma(+) valence state where resonances of varying intensities and widths have been attributed to the fully coupled 3ssigma or 4ssigma and D(') potentials, and where the B state approaches a second avoided crossing with the C(') (1)Sigma(+) valence state [Cooper and Kirby, J. Chem. Phys. 87, 424 (1987); 90, 4895 (1989); Chem. Phys. Lett. 152, 393 (1988)]. Fragments of a progression of weak and mostly diffuse bands, observed for all four isotopomers, have been assigned to the C(')<--X transition. The least-squares modeling of the 4p and 5p complexes reveals the 3ppi, E (1)Pi Rydberg state to be one of the perturbers, violating the Deltav=0 selection rule for Rydberg-Rydberg interactions on account of its rapid transition with increasing v from Rydberg to valence state. A second (1)Pi perturber, very loosely bound and clearly of valence type, contributes to the confusion in the published literature surrounding the 5p, v=0 complex.

SELECTION OF CITATIONS
SEARCH DETAIL