Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; 20(12): e13504, 2021 12.
Article in English | MEDLINE | ID: mdl-34799977

ABSTRACT

SNCA protein product, α-synuclein, is widely renowned for its role in synaptogenesis and implication in both aging and Parkinson's disease (PD), but research efforts are still needed to elucidate its physiological functions and mechanisms of regulation. In this work, we aim to characterize SNCA-AS1, antisense transcript to the SNCA gene, and its implications in cellular processes. The overexpression of SNCA-AS1 upregulates both SNCA and α-synuclein and, through RNA-sequencing analysis, we investigated the transcriptomic changes of which both genes are responsible. We highlight how they impact neurites' extension and synapses' biology, through specific molecular signatures. We report a reduced expression of markers associated with synaptic plasticity, and we specifically focus on GABAergic and dopaminergic synapses, for their relevance in aging processes and PD, respectively. A reduction in SNCA-AS1 expression leads to the opposite effect. As part of this signature is co-regulated by the two genes, we discriminate between functions elicited by genes specifically altered by SNCA-AS1 or SNCA's overexpression, observing a relevant role for SNCA-AS1 in synaptogenesis through a shared molecular signature with SNCA. We also highlight how numerous deregulated pathways are implicated in aging-related processes, suggesting that SNCA-AS1 could be a key player in cellular senescence, with implications for aging-related diseases. Indeed, the upregulation of SNCA-AS1 leads to alterations in numerous PD-specific genes, with an impact highly comparable to that of SNCA's upregulation. Our results show that SNCA-AS1 elicits its cellular functions through the regulation of SNCA, with a specific modulation of synaptogenesis and senescence, presenting implications in PD.


Subject(s)
Gene Expression/genetics , Parkinson Disease/genetics , alpha-Synuclein/therapeutic use , Aging , Humans , Parkinson Disease/pathology , alpha-Synuclein/genetics , alpha-Synuclein/pharmacology
2.
Int J Mol Sci ; 22(4)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671464

ABSTRACT

Obesity is a major risk factor for a large number of secondary diseases, including cancer. Specific insights into the role of gender differences and secondary comorbidities, such as type 2 diabetes (T2D) and cancer risk, are yet to be fully identified. The aim of this study is thus to find a correlation between the transcriptional deregulation present in the subcutaneous adipose tissue of obese patients and the oncogenic signature present in multiple cancers, in the presence of T2D, and considering gender differences. The subcutaneous adipose tissue (SAT) of five healthy, normal-weight women, five obese women, five obese women with T2D and five obese men were subjected to RNA-sequencing, leading to the identification of deregulated coding and non-coding RNAs, classified for their oncogenic score. A panel of DE RNAs was validated via Real-Time PCR and oncogene expression levels correlated the oncogenes with anthropometrical parameters, highlighting significant trends. For each analyzed condition, we identified the deregulated pathways associated with cancer, the prediction of possible prognosis for different cancer types and the lncRNAs involved in oncogenic networks and tissues. Our results provided a comprehensive characterization of oncogenesis correlation in SAT, providing specific insights into the possible molecular targets implicated in this process. Indeed, the identification of deregulated oncogenes also in SAT highlights hypothetical targets implicated in the increased oncogenic risk in highly obese subjects. These results could shed light on new molecular targets to be specifically modulated in obesity and highlight which cancers should receive the most attention in terms of better prevention in obesity-affected patients.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , Obesity/genetics , Oncogenes , Open Reading Frames/genetics , RNA, Long Noncoding/genetics , Subcutaneous Fat/metabolism , Subcutaneous Fat/pathology , Adult , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Female , Humans , Male , Neoplasms/genetics , Obesity/complications , Prognosis , RNA, Long Noncoding/metabolism , Sex Characteristics , Signal Transduction/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...