Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-478335

ABSTRACT

Despite much concerted effort to better understand SARS-CoV-2 viral infection, relatively little is known about the dynamics of early viral entry and infection in the airway. Here we analyzed a single-cell RNA sequencing dataset of early SARS-CoV-2 infection in a humanized in vitro model, to elucidate key mechanisms by which the virus triggers a cell-systems-level response in the bronchial epithelium. We find that SARS-CoV-2 virus preferentially enters the tissue via ciliated cell precursors, giving rise to a population of infected mature ciliated cells, which signal to basal cells, inducing further rapid differentiation. This feed-forward loop of infection is mitigated by further cell-cell communication, before interferon signaling begins at three days post-infection. These findings suggest hijacking by the virus of potentially beneficial tissue repair mechanisms, possibly exacerbating the outcome. This work both elucidates the interplay between barrier tissues and viral infections, and may suggest alternative therapeutic approaches targeting non-immune response mechanisms.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20153437

ABSTRACT

A dysregulated immune response against the SARS-CoV-2 virus plays a critical role in severe COVID-19. However, the molecular and cellular mechanisms by which the virus causes lethal immunopathology are poorly understood. Here, we utilize multiomics single-cell analysis to probe dynamic immune responses in patients with stable or progressive manifestations of COVID-19, and assess the effects of tocilizumab, an anti-IL-6 receptor monoclonal antibody. Coordinated profiling of gene expression and cell lineage protein markers reveals a prominent type-1 interferon response across all immune cells, especially in progressive patients. An anti-inflammatory innate immune response and a pre-exhaustion phenotype in activated T cells are hallmarks of progressive disease. Skewed T cell receptor repertoires in CD8+ T cells and uniquely enriched V(D)J sequences are also identified in COVID-19 patients. B cell repertoire and somatic hypermutation analysis are consistent with a primary immune response, with possible contribution from memory B cells. Our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19, which may contribute to delayed virus clearance and has implications for therapeutic intervention.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20052217

ABSTRACT

In the current COVID-19 crisis, the US and many countries in the world are suffering acute shortages of modern ventilators to care for desperately ill patients. Since modern ICU ventilators are powerful devices that can deliver very high gas flow rates and pressures, multiple physicians have attempted to ventilate more than one patient on a single ventilator - so-called "vent splitting". Early applications of this approach have utilized simple concatenations of ventilator tubing and T-pieces, to provide flow to more than one patient. Additional approaches using custom flow splitters - sometimes made using 3D printing technologies - have also advanced into the clinic with FDA approval. However, heretofore there has been less progress made on controlling individual ventilatory pressures for patients with severe lung disease. Given the inherent variability and instability of lung compliance amongst patients with COVID-19, there remains an important need to provide a means of extending ventilator usefulness to more than one patient, but in a way that provides more tailored pressures that can be titrated over time. In this descriptive report, we provide the basis for a ventilator circuit that can support two patients with individualized peak inspiratory and end-expiratory pressures. The circuit is comprised of exclusively "off the shelf" materials and is inexpensive to produce. The circuit can be used with typical ICU ventilators, and with anesthesia ventilators used in operating rooms. Inspiratory and end-expiratory pressures for each patient can be titrated over time, without changes for one patient affecting the ventilation parameters of the other patient. Using in-line spirometry, individual tidal volumes can be measured for each patient. This Pressure-Regulated Ventilator Splitting (PReVentS) Yale University protocol operates under a pressure-control ventilatory mode, and may function optimally when patients are not triggering breaths from the ventilator. This method has been tested thus far only in the laboratory with mock lungs, and has not yet been deployed in animals or in patients. However, given the novelty and potential utility of this approach, we deemed it appropriate to provide this information to the broader critical care community at the present time. In coming days and weeks, we will continue to characterize and refine this approach, using large animal models and proof-of-principle human studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...