Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-439839

ABSTRACT

The inflammatory and IFN pathways of innate immunity play a key role in both resistance and pathogenesis of Coronavirus Disease 2019 (COVID-19). Innate sensors and SARS-CoV-2-Associated Molecular Patterns (SAMPs) remain to be completely defined. Here we identify single-stranded RNA (ssRNA) fragments from SARS-CoV-2 genome as direct activators of endosomal TLR7/8 and MyD88 pathway. The same sequences induced human DC activation in terms of phenotype and functions, such as IFN and cytokine production and Th1 polarization. A bioinformatic scan of the viral genome identified several hundreds of fragments potentially activating TLR7/8, suggesting that products of virus endosomal processing potently activate the IFN and inflammatory responses downstream these receptors. In vivo, SAMPs induced MyD88-dependent lung inflammation characterized by accumulation of proinflammatory and cytotoxic mediators and immune cell infiltration, as well as splenic DC phenotypical maturation. These results identify TLR7/8 as crucial cellular sensors of ssRNAs encoded by SARS-CoV-2 involved in host resistance and disease pathogenesis of COVID-19.

2.
Food Res Int ; 130: 108856, 2020 04.
Article in English | MEDLINE | ID: mdl-32156341

ABSTRACT

The aim of this study was to investigate the effects of high hydrostatic pressure (HHP) on the inactivation of Lactobacillus fructivorans, on the inactivation of Alicyclobacillus acidoterrestris spores and on the extraction of anthocyanins and total phenolics from açaí pulp. The tested conditions comprised pressures of 400-600 MPa, treatment times of 5-15 min, and temperatures of 25 °C and 65 °C. Results were compared to those of conventional thermal treatments (85 °C/1 min). Regarding A. acidoterrestris spores, applying HHP for 13.5 min, resulted in a value of four-decimal reduction. L. fructivorans presented considerable sensitivity to HHP treatment, achieving inactivation rates above 6.7 log cycles at process conditions at 600 MPa and 65 °C for 5 min. All samples of açaí pulp processed showed absence of thermotolerant coliforms during the 28 days of refrigerated storage (shelf life study). The açaí pulps processed by HHP (600 MPa/5 min/25 °C) had anthocyanin extraction increased by 37% on average. In contrast, conventional thermal treatment reduced anthocyanin content by 16.3%. For phenolic compounds, the process at 600 MPa/5 min/65 °C increases extraction by 10.25%. A combination of HHP treatment and moderate heat (65 °C) was shown to be an alternative to thermal pasteurization, leading to microbiologically safe products while preserving functional compounds.


Subject(s)
Euterpe/chemistry , Euterpe/microbiology , Food Handling/methods , Microbial Viability , Phytochemicals/chemistry , Hydrostatic Pressure
3.
Food Res Int ; 105: 853-862, 2018 03.
Article in English | MEDLINE | ID: mdl-29433282

ABSTRACT

The present study evaluated the effect of high isostatic pressure (HIP) on the activity of peroxidase (POD) and polyphenol oxidase (PPO) from açaí. Açaí pulp was submitted to several combinations of pressure (400, 500, 600MPa), temperature (25 and 65°C) for 5 and 15min. The combined effect of HIP technology and high temperatures (690MPa by 2 and 5min at 80°C) was also investigated and compared to the conventional thermal treatment (85°C/1min). POD and PPO enzyme activity and instrumental color were examined after processing and after 24h of refrigerated storage. Results showed stability of POD for all pressures at 25°C, which proved to be heat-resistant and baro-resistant at 65°C. For PPO, the inactivation at 65°C was 71.7% for 600MPa after 15min. In general, the increase in temperature from 25°C to 65°C reduced the PPO relative activity with no changes in color. Although the thermal treatment and the HIP (690MPa) along with high temperature (80°C) reduced the PPO relative activity, and relevant darkening was observed in the processed samples. Thus, it can be concluded that POD is more baro-resistant than PPO in açaí pulp subjected to the same HIP processing conditions and processing at 600MPa/65°C for 5min may be an effective alternative for thermal pasteurization treatments.


Subject(s)
Catechol Oxidase/metabolism , Euterpe/enzymology , Food Analysis/methods , Food Handling/methods , Fruit/enzymology , Pasteurization , Peroxidase/metabolism , Catechol Oxidase/chemistry , Catechol Oxidase/isolation & purification , Color , Enzyme Stability , Hydrostatic Pressure , Peroxidase/chemistry , Peroxidase/isolation & purification , Protein Denaturation , Temperature , Time Factors
4.
Food Chem ; 139(1-4): 261-6, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23561104

ABSTRACT

The aim of this study was to evaluate the use of sonicated pineapple juice as substrate for producing a probiotic beverage by Lactobacillus casei NRRL B442. Maximal microbial viability was found by cultivating L. casei at 31°C and pH 5.8 (optimised conditions). After fermentation, samples of sweetened and non-sweetened juice were stored. After 42 days of storage under refrigeration (4°C), the microbial viability was 6.03 Log CFU/mL in the non-sweetened sample and 4.77 Log CFU/mL in the sweetened sample. The pH of both samples decreased during storage due to lactic acid production (post acidification). The characteristic colour of the juice was maintained throughout the shelf life and no browning was observed. Sonicated pineapple juice was shown to be a suitable substrate for L. casei cultivation and for the development of an alternative non-dairy probiotic beverage.


Subject(s)
Ananas/microbiology , Beverages/analysis , Industrial Microbiology/methods , Lacticaseibacillus casei/metabolism , Probiotics/chemistry , Ananas/chemistry , Ananas/metabolism , Beverages/microbiology , Fermentation , Food Storage , Lacticaseibacillus casei/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...