Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cereb Blood Flow Metab ; 43(9): 1544-1556, 2023 09.
Article in English | MEDLINE | ID: mdl-37070382

ABSTRACT

The traditional design of PET target engagement studies is based on a baseline scan and one or more scans after drug administration. We here evaluate an alternative design in which the drug is administered during an on-going scan (i.e., a displacement study). This approach results both in lower radiation exposure and lower costs. Existing kinetic models assume steady state. This condition is not present during a drug displacement and consequently, our aim here was to develop kinetic models for analysing PET displacement data. We modified existing compartment models to accommodate a time-variant increase in occupancy following the pharmacological in-scan intervention. Since this implies the use of differential equations that cannot be solved analytically, we developed instead one approximate and one numerical solution. Through simulations, we show that if the occupancy is relatively high, it can be estimated without bias and with good accuracy. The models were applied to PET data from six pigs where [11C]UCB-J was displaced by intravenous brivaracetam. The dose-occupancy relationship estimated from these scans showed good agreement with occupancies calculated with Lassen plot applied to baseline-block scans of two pigs. In summary, the proposed models provide a framework to determine target occupancy from a single displacement scan.


Subject(s)
Brain , Positron-Emission Tomography , Animals , Swine , Brain/metabolism , Radionuclide Imaging
2.
Neuroimage ; 263: 119620, 2022 11.
Article in English | MEDLINE | ID: mdl-36087903

ABSTRACT

Molecular neuroimaging is today considered essential for evaluation of novel CNS drugs; it is used to quantify blood-brain barrier permeability, verify interaction with key target and determine the drug dose resulting in 50% occupancy, IC50. In spite of this, there has been limited data available to inform on how to optimize study designs. Through simulations, we here evaluate how IC50 estimation is affected by the (i) range of drug doses administered, (ii) number of subjects included, and (iii) level of noise in the plasma drug concentration measurements. Receptor occupancy is determined from PET distribution volumes using two different methods: the Lassen plot and Likelihood estimation of occupancy (LEO). We also introduce and evaluate a new likelihood-based estimator for direct estimation of IC50 from PET distribution volumes. For estimation of IC50, we find very limited added benefit in scanning individuals who are given drug doses corresponding to less than 40% receptor occupancy. In the range of typical PET sample sizes (5-20 subjects) each extra individual clearly reduces the error of the IC50 estimate. In all simulations, likelihood-based methods gave more precise IC50 estimates than the Lassen plot; four times the number of subjects were required for the Lassen plot to reach the same IC50 precision as LEO.


Subject(s)
Brain , Positron-Emission Tomography , Humans , Positron-Emission Tomography/methods , Likelihood Functions , Sample Size , Brain/diagnostic imaging , Neuroimaging
SELECTION OF CITATIONS
SEARCH DETAIL
...