Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-496375

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent responsible for the ongoing global pandemic. With over 500 million cases and more than 6 million deaths reported globally, the need for access to effective vaccines is clear. An ideal SARS-CoV-2 vaccine will prevent pathology in the lungs and prevent virus replication in the upper respiratory tract, thus reducing transmission. Here, we assessed the efficacy of an adjuvanted SARS-CoV-2 S1 subunit vaccine, called COVAC-1, in an African green monkey (AGM) model. AGMs immunized and boosted with COVAC-1 were protected from SARS-CoV-2 challenge compared to unvaccinated controls based on reduced pathology and reduced viral RNA levels and infectious virus in the respiratory tract. Both neutralizing antibodies and antibodies capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) were observed in vaccinated animals prior to the challenge. COVAC-1 induced effective protection, including in the upper respiratory tract, thus supporting further development and utility for determining the mechanism that confers this protection. AUTHOR SUMMARYVaccines that can prevent the onward transmission of SARS-CoV-2 and prevent disease are highly desirable. Whether this can be accomplished without mucosal immunization by a parenterally administered subunit vaccine is not well established. Here we demonstrate that following two vaccinations, a protein subunit vaccine containing the S1 portion of the SARS-CoV-2 spike glycoprotein and the novel adjuvant TriAdj significantly reduces the amount of virus in the lungs and also mediates rapid clearance of the virus from the upper respiratory tract. Further support of the effectiveness of COVAC-1 was the observation of reduced pathology in the lungs and viral RNA being largely absent from tissues, blood, and rectal swabs. Thus COVAC-1 appears promising at mediating protection in both the upper and lower respiratory tract and may be capable of reducing subsequent transmission of SARS-CoV-2. Further investigation into the mechanism of protection in the upper respiratory tract and the initial immune response that supports this would be warranted.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-448196

ABSTRACT

The emergence of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resultant pandemic of coronavirus disease 2019 (COVID-19) has led to over one hundred million confirmed infections, greater than three million deaths, and severe economic and social disruption. Animal models of SARS-CoV-2 are critical tools for the pre-clinical evaluation of antivirals, vaccines, and candidate therapeutics currently under urgent development to curb COVID-19-associated morbidity and mortality. The golden (Syrian) hamster model of SARS-CoV-2 infection recapitulates key characteristics of severe COVID-19, including high-titer viral replication in the upper and lower respiratory tract and the development of pathogenic lesions in the lungs. In this work we examined the influence of the route of exposure, sex, and age on SARS-CoV-2 pathogenesis in golden hamsters. We report that delivery of SARS-CoV-2 primarily to the nasal passages (low-volume intranasal), the upper and lower respiratory tract (high-volume intranasal), or the digestive tract (intragastric) results in comparable viral titers in the lung tissue and similar levels of viral shedding during acute infection. However, low-volume intranasal exposure results in milder weight loss during acute infection while intragastric exposure leads to a diminished capacity to regain body weight following the period of acute illness. Further, we examined both sex and age differences in response to SARS-CoV-2 infection. Male hamsters, and to a greater extent older male hamsters, display an impaired capacity to recover from illness and a delay in viral clearance compared to females. Lastly, route of exposure, sex, and age were found to influence the nature of the host inflammatory cytokine response, but they had a minimal effect on both the quality and durability of the humoral immune response as well as the susceptibility of hamsters to SARS-CoV-2 re-infection. Together, these data indicate that the route of exposure, sex, and age have a meaningful impact SARS-CoV-2 pathogenesis in hamsters and that these variables should be considered when designing pre-clinical challenge studies.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-221291

ABSTRACT

The zoonotic spillover of the pandemic SARS-coronavirus 2 (SARS-CoV-2) from an animal reservoir, currently presumed to be the Chinese horseshoe bat, into a naive human population has rapidly resulted in a significant global public health emergency. Worldwide circulation of SARS-CoV-2 in humans raises the theoretical risk of reverse zoonosis events with wildlife, reintroductions of SARS-CoV-2 into permissive non-domesticated animals, potentially seeding new host reservoir species and geographic regions in which bat SARS-like coronaviruses have not historically been endemic. Here we report that North American deer mice (Peromyscus maniculatus) and some closely related members of the Cricetidae family of rodents possess key amino acid residues within the angiotensin-converting enzyme 2 (ACE2) receptor known to confer SARS-CoV-2 spike protein binding. Peromyscus rodent species are widely distributed across North America and are the primary host reservoirs of several emerging pathogens that repeatedly spill over into humans including Borrelia burgdorferi, the causative agent of Lyme disease, deer tick virus, and Sin Nombre orthohantavirus, the causative agent of hantavirus pulmonary syndrome (HPS). We demonstrate that adult deer mice are susceptible to SARS-CoV-2 infection following intranasal exposure to a human isolate, resulting in viral replication in the upper and lower respiratory tract with little or no signs of disease. Further, shed infectious virus is detectable in nasal washes, oropharyngeal and rectal swabs, and viral RNA is detectable in feces and occasionally urine. We further show that deer mice are capable of transmitting SARS-CoV-2 to naive deer mice through direct contact. The extent to which these observations may translate to wild deer mouse populations remains unclear, and the risk of reverse zoonosis and/or the potential for the establishment of Peromyscus rodents as a North American reservoir for SARS-CoV-2 is unknown. Nevertheless, efforts to monitor wild, peri-domestic Peromyscus rodent populations are likely warranted as the SARS-CoV-2 pandemic progresses.

SELECTION OF CITATIONS
SEARCH DETAIL
...