Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21266377

ABSTRACT

ImportanceAs SARS-CoV-2 pervades worldwide, considerable focus has been placed on the longer lasting health effects of the virus on the human host and on the anticipated healthcare needs. ObjectiveThe primary aim of this study is to examine the prevalence of post-acute sequelae of COVID-19 (PASC), commonly known as long COVID, across the world and to assess geographic heterogeneities through a systematic review and meta-analysis. A second aim is to provide prevalence estimates for individual symptoms that have been commonly reported as PASC, based on the existing literature. Data SourcesPubMed, Embase, and iSearch for preprints from medRxiv, bioRxiv, SSRN, and others, were searched on July 5, 2021 with verification extending to August 12, 2021. Study SelectionStudies written in English that consider PASC (indexed as ailments persisting at least 28 days after diagnosis or recovery for SARS-CoV-2 infection) and that examine corresponding prevalence, risk factors, duration, or associated symptoms were included. A total of 40 studies were included with 9 from North America, 1 from South America, 17 from Europe, 11 from Asia, and 2 from other regions. Data Extraction and SynthesisData extraction was performed and separately cross-validated on the following data elements: title, journal, authors, date of publication, outcomes, and characteristics related to the study sample and study design. Using a random effects framework for meta-analysis with DerSimonian-Laird pooled inverse-variance weighted estimator, we provide an interval estimate of PASC prevalence, globally, and across regions. This meta-analysis considers variation in PASC prevalence by hospitalization status during the acute phase of infection, duration of symptoms, and specific symptom categories. Main Outcomes and MeasuresPrevalence of PASC worldwide and stratified by regions. ResultsGlobal estimated pooled PASC prevalence derived from the estimates presented in 29 studies was 0.43 (95% confidence interval [CI]: 0.35, 0.63), with a higher pooled PASC prevalence estimate of 0.57 (95% CI: 0.45, 0.68), among those hospitalized during the acute phase of infection. Females were estimated to have higher pooled PASC prevalence than males (0.49 [95% CI: 0.35, 0.63] versus 0.37 [95% CI: 0.24, 0.51], respectively). Regional pooled PASC prevalence estimates in descending order were 0.49 (95% CI: 0.21, 0.42) for Asia, 0.44 (95% CI: 0.30, 0.59) for Europe, and 0.30 (95% CI: 0.32, 0.66) for North America. Global pooled PASC prevalence for 30, 60, 90, and 120 days after index test positive date were estimated to be 0.36 (95% CI: 0.25, 0.48), 0.24 (95% CI: 0.13, 0.39), 0.29 (95% CI: 0.12, 0.57) and 0.51 (95% CI: 0.42, 0.59), respectively. Among commonly reported PASC symptoms, fatigue and dyspnea were reported most frequently, with a prevalence of 0.23 (95% CI: 0.13, 0.38) and 0.13 (95% CI: 0.09, 0.19), respectively. Conclusions and RelevanceThe findings of this meta-analysis suggest that, worldwide, PASC comprises a significant fraction (0.43 [95% CI: 0.35, 0.63]) of COVID-19 tested positive cases and more than half of hospitalized COVID-19 cases, based on available literature as of August 12, 2021. Geographic differences appear to exist, as lowest to highest PASC prevalence is observed for North America (0.30 [95% CI: 0.32, 0.66]) to Asia (0.49 [95% CI: 0.21, 0.42]). The case-mix across studies, in terms of COVID-19 severity during the acute phase of infection and variation in the clinical definition of PASC, may explain some of these differences. Nonetheless, the health effects of COVID-19 appear to be prolonged and can exert marked stress on the healthcare system, with 237M reported COVID-19 cases worldwide as of October 12, 2021. Key Points QuestionAmong those infected with COVID-19, what is the global and regional prevalence of post-acute sequelae COVID-19 (PASC)? FindingsGlobally, the pooled PASC prevalence estimate was 0.43, whereas the pooled PASC prevalence estimate for patients who had to be hospitalized due to COVID-19 was 0.57. Regionally, estimated pooled PASC prevalence from largest to smallest effect size were 0.49 for Asia, 0.44 for Europe, and 0.30 for North America. Global pooled PASC prevalence for 30, 60, 90, and 120 days after index date were estimated to be 0.36, 0.24, 0.29, and 0.51, respectively. Among commonly reported PASC symptoms, fatigue and dyspnea were reported most frequently, with a prevalence of 0.23 and 0.13. MeaningIn follow-up studies of patients with COVID-19 infections, PASC was common both globally and across geographic regions, with studies from Asia reporting the highest prevalence.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21263296

ABSTRACT

IntroductionFervorous investigation and dialogue surrounding the true number of SARS-CoV-2 related deaths and implied infection fatality rates in India have been ongoing throughout the pandemic, and especially pronounced during the nations devastating second wave. We aim to synthesize the existing literature on the true SARS-CoV-2 excess deaths and infection fatality rates (IFR) in India, through a systematic search followed by viable meta-analysis. We then provide updated epidemiological model-based estimates of the wave 1, wave 2 and combined IFRs using an extension of the Susceptible-Exposed-Infected-Removed (SEIR) model, using data from April 1, 2020 to June 30, 2021. MethodsFollowing PRISMA guidelines, the databases PubMed, Embase, Global Index Medicus, as well as BioRxiv, MedRxiv, and SSRN for preprints (accessed through iSearch), were searched on July 3, 2021 (with results verified through August 15, 2021). Altogether using a two-step approach, 4,765 initial citations were screened resulting in 37 citations included in the narrative review and 19 studies with 41 datapoints included in the quantitative synthesis. Using a random effects model with DerSimonian-Laird estimation, we meta-analyze IFR1 which is defined as the ratio of the total number of observed reported deaths divided by the total number of estimated infections and IFR2 (which accounts for death underreporting in the numerator of IFR1). For the latter, we provide lower and upper bounds based on the available range of estimates of death undercounting, often arising from an excess death calculation. The primary focus is to estimate pooled nationwide estimates of IFRs with the secondary goal of estimating pooled regional and state-specific estimates for SARS-CoV-2 related IFRs in India. We also try to stratify our empirical results across the first and the second wave. In tandem, we present updated SEIR model estimates of IFRs for waves 1, 2, and combined across the waves with observed case and death count data from April 1, 2020 to June 30, 2021. ResultsFor India countrywide, underreporting factors (URF) for cases (sourced from serosurveys) range from 14.3-29.1 in the four nationwide serosurveys; URFs for deaths (sourced from excess deaths reports) range from 4.4-11.9 with cumulative excess deaths ranging from 1.79-4.9 million (as of June 2021). Nationwide pooled IFR1 and IFR2 estimates for India are 0.097% (95% confidence interval [CI]: 0.067 - 0.140) and 0.365% (95% CI: 0.264 - 0.504) to 0.485% (95% CI: 0.344 - 0.685), respectively, again noting that IFR2 changes as excess deaths estimates vary. Among the included studies in this meta-analysis, the IFR1 generally appear to decrease over time from the earliest study end date to the latest study end date (from 4 June 2020 to 6 July 2021, IFR1 changed from 0.199 to 0.055%), whereas a similar trend is not as readily evident for IFR2 due to the wide variation in excess death estimates (from 4 June 2020 to 6 July 2021, IFR2 ranged from (0.290-1.316) to (0.241-0.651) %). Nationwide SEIR model-based combined estimates for IFR1 and IFR2 are 0.101% (95% CI: 0.097 - 0.116) and 0.367% (95% CI: 0.358 - 0.383), respectively, which largely reconcile with the empirical findings and concur with the lower end of the excess death estimates. An advantage of such epidemiological models is the ability to produce daily estimates with updated data with the disadvantages being that these estimates are subject to numerous assumptions, arduousness of validation and not directly using the available excess death data. Whether one uses empirical data or model-based estimation, it is evident that IFR2 is at least 3.6 times more than IFR1. ConclusionWhen incorporating case and death underreporting, the meta-analyzed cumulative infection fatality rate in India varies from 0.36%-0.48%, with a case underreporting factor ranging from 25-30 and a death underreporting factor ranging from 4-12. This implies, by June 30, 2021, India may have seen nearly 900 million infections and 1.7-4.9 million deaths when the reported numbers stood at 30.4 million cases and 412 thousand deaths (covid19india.org) with an observed case fatality rate (CFR) of 1.35%. We reiterate the need for timely and disaggregated infection and fatality data to examine the burden of the virus by age and other demographics. Large degrees of nationwide and state-specific death undercounting reinforce the call to improve death reporting within India.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21259405

ABSTRACT

India has seen a surge of SARS-CoV-2 infections and deaths in early part of 2021, despite having controlled the epidemic during 2020. Building on a two-strain, semi-mechanistic model that synthesizes mortality and genomic data, we find evidence that altered epidemiological properties of B.1.617.2 (Delta) variant play an important role in this resurgence in India. Under all scenarios of immune evasion, we find an increased transmissibility advantage for B.1617.2 against all previously circulating strains. Using an extended SIR model accounting for reinfections and wanning immunity, we produce evidence in support of how early public interventions in March 2021 would have helped to control transmission in the country. We argue that enhanced genomic surveillance along with constant assessment of risk associated with increased transmission is critical for pandemic responsiveness. One Sentence SummaryAltered epidemiological characteristics of B.1.617.2 and delayed public health interventions contributed to the resurgence of SARS-CoV-2 in India from February to May 2021.

SELECTION OF CITATIONS
SEARCH DETAIL
...