Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theriogenology ; 218: 174-182, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38330861

ABSTRACT

The current study investigated effects of dietary amino acid (AA) availability on lactational body condition loss and metabolic status, in relation to reproductive parameters after weaning up to Day 8 post-ovulation. Primiparous sows (n = 35) were allocated to one of two lactation diets containing either low crude protein (CP, 140 g/kg) with a low percentage (8%) of slow protein in total protein (LL, n = 18) or high CP (180 g/kg) with a high (16%) percentage of slow protein (HH, n = 17). The HH diet was expected to improve AA utilization by supplying more AA, in a more gradual fashion. The diets did not affect sow body condition loss during lactation, while the HH diet tended to increase litter weight gain during the week 3 of lactation (Δ = 1.3 kg, P = 0.09). On Day 14 post-farrowing, HH diet led to higher plasma urea both pre-feeding and post-feeding (Δ = 2.3 mmol/L, P < 0.01, Δ = 2.4 mmol/L, P < 0.01, respectively), whilst plasma creatinine, NEFA and IGF-1 were similar. No dietary effects on reproductive parameters were found, however several relationships were found between body condition and reproductive parameters. Sows with higher body weight on Day 1 or Day 21 post-farrowing had greater follicle size on Day 3 post-weaning (ß = 0.03 mm/kg, P < 0.01, ß = 0.04 mm/kg, P < 0.01, respectively). At Day 8 post-ovulation, plasma progesterone concentration was negatively related to loin muscle loss (ß = -0.67 ng/ml · mm-1, P = 0.02), backfat loss (ß = -2.33 ng/ml · mm-1, P = 0.02), and estimated body fat loss (ß = -0.67 ng/ml · mm-1, P = 0.02). Both plasma progesterone and the number of corpora lutea were positively related to the energy balance during lactation (ß = 0.03 ng/ml · ME MJ-1, P = 0.01, ß = 0.01 CL/ME MJ, P = 0.02, respectively). The conceptus size at Day 8 post-ovulation was negatively related to body weight loss (ß = -0.01 mm/kg, P = 0.01), estimated body fat loss (ß = -0.02 mm/kg, P = 0.03) and estimated body protein loss (ß = -0.06 mm/kg, P = 0.04), and was positively related to the energy balance during lactation (ß = 5.2*10-4 mm/ME MJ, P = 0.01). In conclusion, body protein and fat losses during lactation reduced subsequent plasma progesterone concentration and conceptus development at Day 8 post-ovulation.


Subject(s)
Lactation , Progesterone , Pregnancy , Female , Swine , Animals , Litter Size , Lactation/physiology , Reproduction , Ovulation , Diet/veterinary , Proteins , Animal Feed/analysis , Body Weight
2.
Poult Sci ; 102(3): 102455, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36638758

ABSTRACT

In 2 experiments, interactions between trace mineral (Zn, Mn, Cu, Se) source (organic or inorganic) in the broiler breeder diet and egg translucency (high or low) on egg characteristics and embryonic development were investigated. In the first experiment, eggs from old breeders (55-57 wk) and in the second experiment, eggs from prime breeders (34-36 wk) were used. Egg composition and bacterial load on the eggshell were analyzed in fresh eggs. During incubation, metabolic heat production of the embryos (d 8 (E8) to 19 of incubation) and tibia ossification (E8.5-E14.5) were determined daily. At hatch, chicken quality was assessed, including tibia biophysical characteristic. Egg quality was not affected by breeder trace minerals source or egg translucency in both experiments. In both experiments, an interaction between trace minerals source and translucency score was found for egg weight loss during incubation. In inorganic trace minerals fed breeders, a high egg translucency resulted in a higher egg weight loss than a low egg translucency, whereas this difference was not seen in organic trace minerals fed breeders. Embryonic heat production and tibia ossification were not affected by trace minerals source or egg translucency. Chicken quality showed ambiguous results between experiment 1 and 2 regarding trace minerals source in the breeder diet. In experiment 2, high translucent eggs from organic fed breeders hatched later than eggs from the other three treatment groups and additionally, high egg translucency resulted in lower residual yolk weight and higher heart and liver percentage of YFBM compared to low egg translucency. Tibia biophysical characteristics at hatch were not affected by trace minerals source or egg translucency. It can be concluded that organic trace minerals source in broiler breeder diet affects eggshell conductance, particularly in low translucent eggs, but effects on chicken quality and tibia characteristics appears to be limited.


Subject(s)
Trace Elements , Animals , Trace Elements/metabolism , Chickens/metabolism , Egg Shell/metabolism , Ovum/metabolism , Diet/veterinary , Embryonic Development
3.
Front Vet Sci ; 9: 838018, 2022.
Article in English | MEDLINE | ID: mdl-35252425

ABSTRACT

Weaning is a stressful event for piglets, involving substantial changes to their nutritional and social environment. Providing edible enrichment around weaning may ease the weaning transition by increasing pre-weaning feed intake and improving post-weaning performance, health, behavior, and affective state. In this study, we investigated the effects of providing live black soldier fly larvae (BSFL) as edible enrichment pre- and/or post-weaning. Pre-weaning, piglets received either only creep feed (Pre-C, n = 14 litters) or creep feed and live BSFL (Pre-L, n = 15 litters) ad libitum, and post-weaning piglets either had no access to live BSFL (Post-C, n = 24 pens) or they could rotate tubes that released BSFL (Post-L, n = 24 pens) at levels up to 20% of their expected daily dry matter intake, resulting in treatments CC, CL, LC, and LL. No interaction between pre- and post-weaning treatment was found for any of the measured parameters. Before weaning, Pre-L piglets preferred to interact with larvae over creep feed, and Pre-C piglets interacted more with creep feed than Pre-L piglets. Total time spent on feed-directed behaviors did not differ. Continuous larvae provisioning increased caecum length and proximal stomach digesta pH, while it decreased the passage of glucose and fluorescein isothiocyanate through the colon wall on d3 post-weaning (CC vs. LL, n = 12 piglets/treatment). Post-weaning diarrhea and final body weight were not affected by treatment. After weaning, Pre-C piglets tended to eat more and grew marginally faster than Pre-L piglets. Post-C piglets spent more time eating and had a higher feed intake post-weaning than Post-L piglets. Based on home-pen behavioral observations, Post-L piglets actively explored and ate the larvae. Post-C piglets spent more time on exploring the environment and nosing pen mates, and they spent more time on manipulating pen mates on d8 and played more on d8 & 15 compared to Post-L piglets. Piglet responses to a novel environment and an attention bias test on d4 & 5 post-weaning were not influenced by larvae provisioning. In conclusion, pre-weaning larvae provisioning did not improve pre-weaning feed intake and post-weaning performance, however post-weaning larvae provisioning did benefit piglet behavior as less manipulation of pen mates was observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...