Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 12(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769820

ABSTRACT

For the treatment of moderate-to-severe atopic dermatitis in children and adolescents, the monoclonal antibody dupilumab and the selective JAK-1 inhibitor upadacitinib are two modern systemic therapies approved for long-term treatment. Both drugs have demonstrated high efficacy in randomized controlled trials, although evidence from real-world data in the pediatric population is limited. In a prospective analysis over 24 weeks, we investigated the efficacy, safety and treatment satisfaction of both systemic therapies in 23 patients (16 patients treated with dupilumab; 7 patients treated with upadacitinib). The median age of the patients was 16 years, with a median EASI of 18.8. A significant improvement in the EASI, VAS-itch, CDLQI, POEM and DFIQ from baseline to week 24 was demonstrated for both treatment options. No significant difference was observed between dupilumab and upadacitinib in any of the assessed scores. Less adverse events were recorded in the real-world setting compared with clinical trials. Our results confirm the efficacy and safety of dupilumab and upadacitinib as equivalent treatment options in children and adolescents in a real-world setting.

2.
J Exp Med ; 219(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36112363

ABSTRACT

Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10-5), but not >70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10-5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10-10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old.


Subject(s)
Autoantibodies , Influenza, Human , Interferon Type I , Pneumonia , COVID-19/complications , COVID-19/immunology , Humans , Influenza, Human/complications , Influenza, Human/immunology , Interferon Type I/immunology , Interferon Type I/metabolism , Pneumonia/complications , Pneumonia/immunology , Yellow Fever Vaccine/adverse effects
3.
J Infect Dis ; 226(12): 2095-2104, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36031537

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with extensive nonpharmacological interventions, have profoundly altered the epidemiology of major respiratory viruses. Some studies have described virus-virus interactions, particularly manifested by viral interference mechanisms at different scales. However, our knowledge of the interactions between SARS-CoV-2 and other respiratory viruses remains incomplete. Here, we studied the interactions between SARS-CoV-2 and several respiratory viruses (influenza, respiratory syncytial virus, human metapneumovirus, and human rhinovirus) in a reconstituted human epithelial airway model, exploring different scenarios affecting the sequence and timing of coinfections. We show that the virus type and sequence of infections are key factors in virus-virus interactions, the primary infection having a determinant role in the immune response to the secondary infection.


Subject(s)
COVID-19 , Coinfection , Metapneumovirus , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Humans , SARS-CoV-2 , Nasal Mucosa
4.
Cancer Immunol Immunother ; 71(7): 1771-1775, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34748076

ABSTRACT

Here, we report a novel experimental setup to perform adoptive transfer of gene-edited B cells using humanized immune system mice by infusing autologous HIS mouse-derived human B cells "educated" in a murine context and thus rendered tolerant to the host. The present approach presents two advantages over the conventional humanized PBMC mouse models: (i) it circumvents the risk of xenogeneic graft-versus-host reaction and (ii) it mimics more closely human immune responses, thus favoring clinical translation. We show that the frequencies and numbers of transduced B cells in recipient's spleens one week post-transfer are within the range of the size of the pre-immune B cell population specific for a given protein antigen in the mouse. They are also compatible with the B cell numbers required to elicit a sizeable immune response upon immunization. Altogether, our findings pave the way for future studies aiming at assessing therapeutic interventions involving B cell reprogramming for instance by an antibody transgene in a "humanized" hematopoietic setting.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukocytes, Mononuclear , Adoptive Transfer , Animals , Disease Models, Animal , Humans , Mice , Mice, SCID
5.
Curr Opin Pharmacol ; 62: 43-59, 2022 02.
Article in English | MEDLINE | ID: mdl-34915400

ABSTRACT

To face the COVID-19 pandemic, prophylactic vaccines have been developed in record time, but vaccine coverage is still limited, accessibility is not equitable worldwide, and the vaccines are not fully effective against emerging variants. Therefore, therapeutic treatments are urgently needed to control the pandemic and treat vulnerable populations, but despite all efforts made, options remain scarce. However, the knowledge gained during 2020 constitutes an invaluable platform from which to build future therapies. In this review, we highlight the main drug repurposing strategies and achievements made over the first 18 months of the pandemic, but also discuss the antivirals, immunomodulators and drug combinations that could be used in the near future to cure COVID-19.


Subject(s)
COVID-19 , Vaccines , Drug Repositioning , Humans , Pandemics , SARS-CoV-2
6.
Vaccines (Basel) ; 9(10)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34696298

ABSTRACT

The development of a live-attenuated vaccine (LAV) for the prevention of human metapneumovirus (HMPV) infection is often hampered by the lack of highly efficient and scalable cell-based production systems that support eventual global vaccine production. Avian cell lines cultivated in suspension compete with traditional cell platforms used for viral vaccine manufacture. We investigated whether the DuckCelt®-T17 avian cell line (Vaxxel), previously described as an efficient production system for several influenza strains, could also be used to produce a new HMPV LAV candidate (Metavac®, SH gene-deleted A1/C-85473 HMPV). To that end, we characterized the operational parameters of MOI, cell density, and trypsin addition to achieve the optimal production of Metavac®, and demonstrated that the DuckCelt®-T17 cell line is permissive and well-adapted to the production of the wild-type A1/C-85473 HMPV and the Metavac® vaccine candidate. Moreover, our results confirmed that the LAV candidate produced in DuckCelt®-T17 cells conserves its advantageous replication properties in LLC-MK2 and 3D-reconstituted human airway epithelium models, and its capacity to induce efficient neutralizing antibodies in a BALB/c mouse model. Our results suggest that the DuckCelt®-T17 avian cell line is a very promising platform for the scalable in-suspension serum-free production of the HMPV-based LAV candidate Metavac®.

7.
Nat Commun ; 10(1): 45, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30604748

ABSTRACT

Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Here, we use engineered murine leukemia virus-like particles loaded with Cas9-sgRNA ribonucleoproteins (Nanoblades) to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades are also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for "all-in-one" homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology.


Subject(s)
CRISPR-Associated Protein 9/genetics , Gene Editing/methods , Genetic Vectors/genetics , RNA, Guide, Kinetoplastida/genetics , Ribonucleoproteins/genetics , Animals , Cell Line, Tumor , DNA Repair/genetics , Embryo, Mammalian , Fibroblasts , Gene Editing/economics , Genome/genetics , HEK293 Cells , Hematopoietic Stem Cells , Humans , Induced Pluripotent Stem Cells , Leukemia Virus, Murine/genetics , Macrophages , Mice , Mice, Inbred C57BL , Primary Cell Culture , Transcriptional Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...