Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 38(5): 110318, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35090597

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may target epitopes that reduce durability or increase the potential for escape from vaccine-induced immunity. Using synthetic vaccinology, we have developed rationally immune-focused SARS-CoV-2 Spike-based vaccines. Glycans can be employed to alter antibody responses to infection and vaccines. Utilizing computational modeling and in vitro screening, we have incorporated glycans into the receptor-binding domain (RBD) and assessed antigenic profiles. We demonstrate that glycan-coated RBD immunogens elicit stronger neutralizing antibodies and have engineered seven multivalent configurations. Advanced DNA delivery of engineered nanoparticle vaccines rapidly elicits potent neutralizing antibodies in guinea pigs, hamsters, and multiple mouse models, including human ACE2 and human antibody repertoire transgenics. RBD nanoparticles induce high levels of cross-neutralizing antibodies against variants of concern with durable titers beyond 6 months. Single, low-dose immunization protects against a lethal SARS-CoV-2 challenge. Single-dose coronavirus vaccines via DNA-launched nanoparticles provide a platform for rapid clinical translation of potent and durable coronavirus vaccines.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nanoparticles/administration & dosage , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , Cricetinae , Epitopes , Guinea Pigs , Immunogenicity, Vaccine , Mice , Nanoparticles/chemistry , Nucleic Acid-Based Vaccines/administration & dosage , Nucleic Acid-Based Vaccines/chemistry , Nucleic Acid-Based Vaccines/genetics , Nucleic Acid-Based Vaccines/immunology , Polysaccharides/chemistry , Polysaccharides/genetics , Polysaccharides/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccine Potency
2.
J Bio Tribocorros ; 5(4)2019 Dec.
Article in English | MEDLINE | ID: mdl-31828005

ABSTRACT

The problem of wear and corrosion of CoCrMo-implant surfaces in the human body following total joint replacement has been commonly investigated with tribocorrosion tests, using different lubricants meant to simulate the pseudo-synovial fluid. While results considering the synovial fluid components separately have highlighted their individual influence on the tribological performance of CoCrMo-alloy, an understanding about the influence of the synovial fluid components under the electrochemical point of view is missing. This work aims to investigate the effect of bovine serum albumin (BSA) and hyaluronic acid (HA) on electrochemical potential variations of CoCrMo alloys tested in a model synovial fluid. To simulate the environment inside the synovial capsule, the tests were performed inside a CO2 incubator at 37°C. Open circuit potential, electrochemical impedance spectroscopy, cathodic and anodic potentiodynamic measurements were performed with different electrolytes, prepared with cell culture medium (RMPI-1640), BSA and HA. The final CoCrMo-surface was analyzed by SEM/EDS and infrared spectroscopy. The influence of HA on the corrosion of the CoCrMo-alloy depended on the presence of BSA proteins adsorbed on the CoCrMo-surface: EIS and anodic polarization results showed a corrosive action of HA in the absence of adsorbed proteins. In the presence of both BSA and HA, organometallic precipitates were found on the CoCrMo surface following reverse anodic polarization, which remind of corrosion products found in-vivo. These results indicate that HA affects the interaction of CoCrMo implant alloys with protein-containing model synovial fluids, and suggest that HA needs to be considered in tribocorrosion studies for more clinically relevant outcomes.

3.
Materialia (Oxf) ; 62019 Jun.
Article in English | MEDLINE | ID: mdl-31183460

ABSTRACT

During joint inflammation, various reactive oxygen species (ROS) are present in the surrounding tissue and joint fluid. In the laboratory, hydrogen peroxide (H2O2) is typically used to simulate inflammatory conditions, and media containing proteins and hyaluronic acid (HA) are employed to simulate joint synovial fluid. Electrochemical interactions between H2O2 and HA in the presence of a CoCrMo surface are expected, since HA molecules contain redox-active moieties. We hypothesized that any redox reactions of these moieties with ROS will mitigate the oxidizing effect of H2O2 on the CoCrMo surface, limiting the corrosion rate of the metal. Non-destructive electrochemical measurements (open circuit potential, linear polarization resistance and electrochemical impedance spectroscopy) were used to investigate the corrosion response of CoCrMo in synovial model fluid containing physiologically relevant concentrations of albumin proteins and hyaluronic acid, with and without H2O2. Two different molarities of H2O2, 3 mM and 30 mM, were tested. While both molarities are within physiological limits, 3mM is well within the range HA could mitigate, whereas 30 mM is not. Contrary to our hypothesis, HA did not alleviate corrosion in 3 mM H2O2 and even caused a corrosion increase in the case of 30 mM H2O2. The decrease in corrosion resistance of the alloy may be attributed to the complexation of degenerated HA molecular chains with chromium ions released from the metallic surface, which are necessary to build a protective oxide film. This finding has clinical implications, suggesting that HA accelerates corrosion of CoCrMo implants in the presence of strong inflammation.

4.
Biotribology (Oxf) ; 182019 Jun.
Article in English | MEDLINE | ID: mdl-30984811

ABSTRACT

Wear and corrosion in total hip replacement negatively impact implant service-life and patient well-being. The aim of this study was to generate a statistical response surface of material loss using an apparatus, capable of testing the effect of wear and corrosion products in situ on cells, such as macrophages. The test chamber of a ball-on-flat tribometer operating inside a CO2 incubator was integrated with an electrochemical setup and adapted for cell culture work. A 20-test series, following a 2-level 3-factor design of experiments, was performed with a ceramic head in reciprocating rotational motion against a CoCrMo-alloy disc, under constant load. The lubricant was cell culture medium (RPMI-1640+10vol% bovine serum). Response surfaces were generated, which statistically showed the influence of motion amplitude, load, and potential on the total mass loss and wear scar volume of the metallic discs. Potential had the highest impact on the total mass loss, while motion amplitude and load significantly influenced the wear scar volume. The concentrations of the alloy elements found in the lubricants reflected the bulk-alloy stoichiometry. The total concentration of Co released into the lubricant (2.3-63 ppm by total mass loss, 1.5 to 62 ppm by ICP-MS) corresponded well with the known range to trigger cell response. Tribocorrosion tests in the presence of cells and tissues, such as macrophages, lymphocytes and/or synovium, will be carried out in the future.

5.
Wear ; 332-333: 643-649, 2015.
Article in English | MEDLINE | ID: mdl-26085697

ABSTRACT

Tribochemical reactions in a protein lubricated metal-on-metal (MoM) sliding contact may play a significant role for its wear performance. Such reactions lead to the formation of a carbonaceous 'tribofilm', which can act as a protective layer against corrosion and wear. The purpose of this study was to determine the effect of contact load on wear and the formation and retention of tribofilms. Wear tests were performed in a custom-made ball-on-flat testing apparatus that incorporated an electrochemical cell. A ceramic ball was used to articulate against low-carbon wrought CoCrMo alloy pins in bovine serum. Using a range of contact loads at a single potentiostatic condition (close to free potential), weight loss and changes in surface properties were evaluated. We determined that wear was influenced by the loading condition. As expected, wear increased with load, but the association between applied load and measured weight loss was not linear. In the intermediate load region, in the range of 32-48 N (~58-80 MPa), there was more than an order of magnitude drop in the wear per unit load, and the wear versus load data suggested an inflexion point at 49 N. Regression analyses yielded a cubic model (R2=0.991; p=0.0002), where the cubic term, which represents the inflexion, was highly significant (p=0.0021). This model is supported by the observations that the minimum in the friction versus load curve is at 52 N and the highest relative increase in polarization resistance occurred at 49 N. Scanning electron microscopy and Raman spectroscopy indicated the absence of a tribofilm for the low and within the contact area of the high load cases. Synergistic interactions of wear and corrosion seem to play an important role.

6.
Hum Gene Ther Methods ; 25(6): 315-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25470335

ABSTRACT

The skin is rich in antigen-presenting cells and as such is an excellent target tissue for vaccination strategies. Electroporation is a physical delivery method that potentiates the uptake of DNA vaccines into target cells. Intradermal electroporation offers a minimally invasive solution to DNA delivery in the clinic. Here we describe the direct transfection of dendritic cells in the epidermis, using a surface dermal electroporation device, and specifically show a dendritic cell transfected with plasmid expressing green fluorescent protein. The dendritic cell has used its motile capabilities after transfection to move from the epidermis into the dermis, making its way to the lymphatic system.


Subject(s)
Dendritic Cells/cytology , Electroporation/methods , Epidermal Cells , Plasmids/administration & dosage , Transfection/methods , Animals , Dendritic Cells/metabolism , Electroporation/instrumentation , Female , Fluorescent Dyes , Genes, Reporter , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Guinea Pigs , Microscopy, Confocal
7.
J Mech Behav Biomed Mater ; 29: 199-212, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24099949

ABSTRACT

The demand for total hip replacement (THR) surgery is increasing in the younger population due to faster rehabilitation and more complete restoration of function. Up to 2009, metal-on-metal (MoM) hip joint bearings were a popular choice due to their design flexibility, post-operative stability and relatively low wear rates. The main wear mechanisms that occur along the bearing surface of MoM joints are tribochemical reactions that deposit a mixture of wear debris, metal ions and organic matrix of decomposed proteins known as a tribolayer. No in-depth electrochemical studies have been reported on the structure and characteristics of this tribolayer or about the parameters involved in its formation. In this study, we conducted an electrochemical investigation of different surfaces (bulk-like: control, nano-crystalline: new implant and tribolayer surface: retrieved implant) made out of two commonly used hip CoCrMo alloys (high-carbon and low-carbon). As per ASTM standard, cyclic polarization tests and electrochemical impedance spectroscopy tests were conducted. The results obtained from electrochemical parameters for different surfaces clearly indicated a reduction in corrosion for the tribolayer surface (Icorr: 0.76µA/cm(2)). Further, polarization resistance (Rp:2.39±0.60MΩ/cm(2)) and capacitance (Cdl:15.20±0.75µF/cm(2)) indicated variation in corrosion kinetics for the tribolayer surface, that attributed to its structure and stability in a simulated body environment.


Subject(s)
Hip Joint , Metals, Heavy/chemistry , Alloys/chemistry , Carbon/chemistry , Corrosion , Electrochemistry , Metal Nanoparticles/chemistry , Surface Properties
8.
Osteoarthritis Cartilage ; 17(9): 1197-203, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19349041

ABSTRACT

OBJECTIVE: By means of scanning white light interferometry, develop a noncontact, nondestructive technique capable of measuring surface topography of viable cartilage. METHODS: Using full thickness cylindrical cartilage explants obtained from bovine calf knees, experiments were performed to produce a surface preparation protocol that yields highly repeatable topographical measurements while maintaining cartilage viability. To further validate the technique, a series of human talar cartilage samples, displaying varying degrees of cartilage degeneration, was then subjected to interferometric measurements and compared to their histology. RESULTS: A key aspect of the technique of surface topographic measurement by interferometry was the development of an optimal surface preparation process. The technique was successfully validated against standard 2-D profilometry. The intrinsic variability of the technique is less than 2%, which is much less than the average point-to-point variability of 17% observed across a cartilage specimen. The technique was hence sufficiently sensitive to readily detect differences in roughness between surfaces of healthy cartilage in different locations on the bovine knee. Thus, the average roughness of the medial explants exceeded that of the lateral explants by 0.35 microm Ra (P=0.003) and the roughness of the trochlear explants exceeded that of the condylar explants by 0.55 microm Ra (P<0.0001). Also, applying this technique to diseased human talar cartilage samples, a statistically significant increase in the average surface roughness value per unit increase in histological degeneration score was observed (> or =0.2 microm Ra, P< or =0.041), making surface roughness obtained via interferometry a useful parameter for evaluating cartilage health nondestructively. CONCLUSIONS: The aim of developing a protocol based on white light interferometry to measure the surface topography of viable articular cartilage was achieved. This interferometric technique opens the door to monitoring the surface topography of live cartilage, as is desirable for ex vivo tests on cartilage explants.


Subject(s)
Cartilage, Articular/pathology , Osteoarthritis, Knee/pathology , Aged , Aged, 80 and over , Animals , Ankle Joint/pathology , Cattle , Female , Humans , Interferometry/methods , Knee Joint/pathology , Light , Male , Middle Aged , Reproducibility of Results , Statistics as Topic , Surface Properties
9.
Hip Int ; 12(2): 103-107, 2002.
Article in English | MEDLINE | ID: mdl-28124348

ABSTRACT

Polyethylene wear and associated osteolysis can limit the longevity of total hip replacement. In recent years, many improvements have been made in the consolidation, manufacture, and sterilization of polyethylene acetabular components. These improvements provided reduced polyethylene wear and prolonged usefulness of total hip replacement. Recent advances in extensively cross-linking polyethylene offer the possibility to substantially further reduce wear in total hip replacement. Hip simulator wear testing demonstrates an order of magnitude reduction in wear resulting from cross-linking GUR 1050 polyethylene by exposure to 100 kGy of electron beam radiation followed by annealing to encourage cross-linking and to reduce residual free radicals. Clinical investigation will be required to validate the wear advantage of these materials in vivo. (Hip International 2002; 2: 103-7).

SELECTION OF CITATIONS
SEARCH DETAIL
...