Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
MethodsX ; 11: 102406, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37854712

ABSTRACT

In the last decade, improvements in the analytical precision achievable by zircon U-Pb geochronological techniques have allowed to resolve complexities of zircon crystallization histories in magmatic rocks to an unprecedented level. A number of studies have strived to link resolvable dispersion in zircon age spectra of samples from fossil magmatic systems to the physical parameters of their parent magma bodies. However, the methodologies developed have so far been limited to reproduce the effect of simple thermal histories on the final distribution of zircon ages. In this work we take a more nuanced approach, fine-tuning a thermodynamics-based zircon saturation model to predict the relative distribution of zircon ages in samples from silicic magma reservoirs experiencing open-system processes (e.g. heat/mass addition, mechanical mixing). Employing the MATLAB package (AgeSpectraAnalyst) presented in this contribution:•Users can forward model the effect that diverse thermal histories and mechanical mixing processes characteristic of silicic magma bodies have on zircon age distributions as measured by high-precision, chemical abrasion thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb geochronology.•Zircon CA-ID-TIMS datasets from silicic magmatic systems can be easily compared with model output to gain semi-quantitative information on thermo-mechanical history of the system of interest.•We demonstrated (Tavazzani et al., in press) that distribution of high-precision zircon ages in crystallized remnants of shallow (∼ 250 MPa), silicic magma reservoirs can discriminate between systems that experienced catastrophic, caldera-forming eruptions and systems that underwent monotonic cooling histories.

2.
Sci Adv ; 9(6): eabp9482, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36763661

ABSTRACT

Subduction is the main process that recycles surface material into the mantle. Fluids and melts derived by dehydration and partial melting reactions of subducted continental crust, a major reservoir of volatiles (i.e., H2O and CO2) and incompatible elements, can substantially metasomatize and refertilize the mantle. Here, we investigate glassy inclusions of silicate melt of continental origin found in Variscan ultrahigh-pressure eclogites to assess the continental crust contribution to mantle metasomatism and the journey of volatiles, carbon in particular, to the deep roots of mountain belts. We argue that the melt preserved in these inclusions is the agent responsible for mantle metasomatism and subsequent ultrapotassic magmatism in the Variscides. We propose that continental subduction can redistribute a substantial volume of carbon in the continental lithosphere, which is subsequently transferred to the continental crust during postcollisional magmatism and stored for a time length longer than that of the modern carbon cycle.

3.
Sci Adv ; 8(2): eabk2184, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35020434

ABSTRACT

Somma-Vesuvius is one of the most iconic active volcanoes with historic and archeological records of numerous hazardous eruptions. Petrologic studies of eruptive products provide insights into the evolution of the magma reservoir before eruption. Here, we quantify the duration of shallow crustal storage and document the evolution of phonolitic magmas before major eruptions of Somma-Vesuvius. Garnet uranium-thorium petrochronology suggests progressively shorter pre-eruption residence times throughout the lifetime of the volcano. Residence times mirror the repose intervals between eruptions, implying that distinct phonolite magma batches were present throughout most of the volcano's evolution, thereby controlling the eruption dynamics by preventing the ascent of mafic magmas from longer-lived and deeper reservoirs. Frequent lower-energy eruptions during the recent history sample this deeper reservoir and suggest that future Plinian eruptions are unlikely without centuries of volcanic quiescence. Crystal residence times from other volcanoes reveal that long-lived deep-seated reservoirs and transient upper crustal magma chambers are common features of subvolcanic plumbing systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...